【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長(zhǎng)為a厘米的正方形;B型:長(zhǎng)為a厘米,寬為1厘米的長(zhǎng)方形;C型:邊長(zhǎng)為1厘米的正方形.
(1)A型2塊,B型4塊,C型4塊,此時(shí)紙板的總面積為 平方厘米;
①?gòu)倪@10塊紙板中拿掉1塊A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個(gè)大正方形,這個(gè)大正方形的邊長(zhǎng)為 厘米;
②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個(gè)相同的大正方形,請(qǐng)問(wèn)拿掉的是2塊哪種類型的紙板?(計(jì)算說(shuō)明)
(2)A型12塊,B型12塊,C型4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個(gè)相同形狀的大正方形,則大正方形的邊長(zhǎng)為 .
【答案】(1);①;②2塊C類;(2).
【解析】
(1)利用正方形的面積公式即可求解;①把(1)求得的總面積減去a2,然后利用完全平方公式因式分解,即可得到大正方形的邊長(zhǎng);②把(1)求得的總面積減去2,利用完全平方公式因式分解,可得正方形的邊長(zhǎng),故需拿掉2塊C類型的紙板;
(2)先求出這28塊紙板的總面積,再把它配方,再得到需要拿掉的紙板與大正方形的面積.
(1)A型2塊,B型4塊,C型4塊,此時(shí)紙板的總面積為平方厘米;
①∵==,
∴這個(gè)大正方形的邊長(zhǎng)為厘米;
②從這10塊紙板中拿掉2塊C類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個(gè)相同的大正方形,理由如下:
-2=,此時(shí)的兩個(gè)大正方形的邊長(zhǎng)為厘米;
(2)A型12塊,B型12塊,C型4塊,從這28塊紙板的面積為.
∵緊密地排出三個(gè)相同形狀的大正方形,
∴=
故需拿掉1塊C類型紙板,此時(shí)三個(gè)大正方形的邊長(zhǎng)為cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)從A地到B地,某甲走直徑AB上方的半圓途徑;乙先走直徑AC上方半圓的途徑,再走直徑CB下方半圓的途徑,如圖1,已知AB=40米,AC=30米,計(jì)算個(gè)人所走的路程,并比較兩人所走路程的遠(yuǎn)近;
(2)如果甲.乙走的路程圖改成圖2,兩人走的路程遠(yuǎn)近相同嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為,且點(diǎn)A在點(diǎn)B的左側(cè),
(1)求出a,b的值;
(2)現(xiàn)有一只螞蟻P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)另一只螞蟻Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).
①兩只螞蟻經(jīng)過(guò)多長(zhǎng)時(shí)間相遇?
②設(shè)兩只螞蟻在數(shù)軸上的點(diǎn)C處相遇,求點(diǎn)C對(duì)應(yīng)的數(shù);
③經(jīng)過(guò)多長(zhǎng)時(shí)間,兩只螞蟻在數(shù)軸上相距20個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)P為△ABC內(nèi)部或邊上的點(diǎn),若滿足△PAB,△PBC,△PAC至少有一個(gè)三角形與△ABC相似(點(diǎn)P不與△ABC頂點(diǎn)重合),則稱點(diǎn)P為△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
在平面直角坐標(biāo)系xOy中,
(1)點(diǎn)A坐標(biāo)為(, ), AB⊥x軸于B點(diǎn),在E(2,1),F (, ),G (, ),這三個(gè)點(diǎn)中,其中是△AOB的自相似點(diǎn)的是 (填字母);
(2)若點(diǎn)M是曲線C: (, )上的一個(gè)動(dòng)點(diǎn),N為x軸正半軸上一個(gè)動(dòng)點(diǎn);
圖2
① 如圖2, ,M點(diǎn)橫坐標(biāo)為3,且NM = NO,若點(diǎn)P是△MON的自相似點(diǎn),求點(diǎn)P的坐標(biāo);
②若,點(diǎn)N為(2,0),且△MON的自相似點(diǎn)有2個(gè),則曲線C上滿足這樣條件的點(diǎn)M共有 個(gè),請(qǐng)?jiān)趫D3中畫出這些點(diǎn)(保留必要的畫圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為方便顧客停車,決定設(shè)計(jì)一個(gè)地下停車場(chǎng),為了測(cè)得該校地下停車場(chǎng)的限高CD,在施工時(shí)間測(cè)得下列數(shù)據(jù):如圖,從地面E點(diǎn)測(cè)得地下停車場(chǎng)的俯角為30°,斜坡AE的長(zhǎng)為16米,地面B點(diǎn)(與E點(diǎn)在同一個(gè)水平線)距停車場(chǎng)頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場(chǎng)的高度AC及限高CD(結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明設(shè)計(jì)了一個(gè)問(wèn)題,分三步完成:
(1)已知關(guān)于的一元一次方程請(qǐng)完成數(shù)軸,并在數(shù)軸上標(biāo)注與對(duì)應(yīng)的點(diǎn),分別記作A、B;
(2)在(1)的條件下,在數(shù)軸上另有一點(diǎn)C對(duì)應(yīng)的數(shù)為C與A的距離是C與B的距離的5倍,且C在表示5的點(diǎn)的左側(cè).
(3)請(qǐng)結(jié)合(1)、(2)提供的條件和圖①,利用一元一次方程的知識(shí),在圖②中的9個(gè)方格內(nèi)填上恰當(dāng)?shù)臄?shù),使每一行、每一列、每條斜對(duì)角線的數(shù)的和相等,要求:列出方程、并填表格,即圖②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形紙片ABCD,AB=4,BC=10,M是BC的中點(diǎn),點(diǎn)P沿折線BA—AD運(yùn)動(dòng),以MD為折癟將長(zhǎng)方形紙片向右翻折,使點(diǎn)B落在長(zhǎng)方形的AD邊上,則折痕MP的長(zhǎng)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的正方形ABCD外有一點(diǎn)E,∠AEB=90°,F為DE的中點(diǎn),連接CF,則CF的最大值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別在六次射擊中的成績(jī)?nèi)缦卤恚海▎挝唬涵h(huán))
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 6 | 7 | 7 | 8 | 6 | 8 |
乙 | 5 | 9 | 6 | 8 | 5 | 9 |
分別算出兩人射擊的平均數(shù)和方差.這六次射擊中成績(jī)發(fā)揮比較穩(wěn)定的是誰(shuí)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com