【題目】如圖,已知RtABC中,∠C90°,∠A60°,AC3cm,AB6m,點(diǎn)P在線段AC上以1cm/s的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AB上以2cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)當(dāng)t1時(shí),判斷△APQ的形狀,并說(shuō)明理由;

2)當(dāng)t為何值時(shí),△APQ與△CQP全等?請(qǐng)寫出證明過(guò)程.

【答案】(1)△APQ是等邊三角形;(2)t=1.5.

【解析】

(1)分別求出AP、AQ的長(zhǎng),根據(jù)等邊三角形的判定定理即可得出結(jié)論

(2)根據(jù)全等的條件和已知分別求出AP、CP、AQ、CQ的長(zhǎng)根據(jù)全等三角形的判定定理即可得出結(jié)論

1)△APQ是等邊三角形.理由如下

t=1,∴AP=3﹣1×1=2,AQ=2×1=2,∴APAQ

∵∠A=60°,∴△APQ是等邊三角形;

(2)存在t,使△APQ和△CPQ全等.當(dāng)t=1.5s時(shí),△APQ和△CPQ全等.理由如下∵在Rt△ACB,AB=6,AC=3,∴∠B=30°,∠A=60°,當(dāng)t=1.5時(shí),此時(shí)APPC

t=1.5s,∴APCP=1.5cm

AQ=3cm,∴AQAC

又∵∠A=60°,∴△ACQ是等邊三角形,∴AQCQ

在△APQ和△CPQ中,∵AQ=CQ,AP=CP,PQ=PQ,∴△APQ≌△CPQ(SSS);

即存在時(shí)間t,使△APQ和△CPQ全等,時(shí)間t=1.5;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標(biāo)系中,點(diǎn)O,C,F(xiàn)在y軸上,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M為OC的中點(diǎn),拋物線y=ax2+b經(jīng)過(guò)M,B,E三點(diǎn),則 的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個(gè)含30°角的△EDF的30°角的頂點(diǎn)D放在AB邊上,E,F(xiàn)分別在AC,BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直,若△CEF與△DEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度數(shù);

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底角為72°,腰AB的垂直平分線交另一腰AC于點(diǎn)E,垂足為D,連接BE,則下列結(jié)論錯(cuò)誤的是(

A. ∠EBC36° B. BC = AE

C. 圖中有2個(gè)等腰三角形 D. DE平分∠AEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)A,BC在同一條直線上,點(diǎn)MN分別是AB、AC的中點(diǎn),如果AB=10cm,AC=8cm,那么線段MN的長(zhǎng)度為( 。

A. 6cm B. 9cm C. 3cm6cm D. 1cm9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)DE分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)EEF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校共有900名學(xué)生,學(xué)校準(zhǔn)備調(diào)查他們對(duì)沈陽(yáng)創(chuàng)建衛(wèi)生城知識(shí)的了解程度,團(tuán)委對(duì)部分學(xué)生采用了隨機(jī)抽樣調(diào)查的方式,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示)

(1)根據(jù)圖中信息,學(xué)校決定對(duì)不了解了解一點(diǎn)的同學(xué)進(jìn)行培訓(xùn),估計(jì)該校約有多少名學(xué)生參加培訓(xùn)?

(2)請(qǐng)你直接將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

同步練習(xí)冊(cè)答案