【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點A、B(點A位于點B的左側(cè)),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.

(1)求點A、B、C的坐標(biāo);
(2)設(shè)動點N(﹣2,n),求使MN+BN的值最小時n的值;
(3)P是拋物線上一點,請你探究:是否存在點P,使以P、A、B為頂點的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點P的坐標(biāo);若不存在,說明理由.

【答案】
(1)

解:令y=0得x1=﹣2,x2=4,

∴點A(﹣2,0)、B(4,0)

令x=0得y=﹣ ,

∴點C(0,﹣


(2)

解:將x=1代入拋物線的解析式得y=﹣

∴點M的坐標(biāo)為(1,﹣

∴點M關(guān)于直線x=﹣2的對稱點M′的坐標(biāo)為(﹣5,

設(shè)直線M′B的解析式為y=kx+b

將點M′、B的坐標(biāo)代入得:

解得:

所以直線M′B的解析式為y=

將x=﹣2代入得:y=﹣ ,

所以n=﹣


(3)

解:過點D作DE⊥BA,垂足為E.

由勾股定理得:

AD= =3 ,

BD= ,

如下圖,①當(dāng)P1AB∽△ADB時,

即:

∴P1B=6

過點P1作P1M1⊥AB,垂足為M1

即:

解得:P1M1=6

即:

解得:BM1=12

∴點P1的坐標(biāo)為(﹣8,6

∵點P1不在拋物線上,所以此種情況不存在;

②當(dāng)△P2AB∽△BDA時, 即:

∴P2B=6

過點P2作P2M2⊥AB,垂足為M2

,即:

∴P2M2=2

,即:

∴M2B=8

∴點P2的坐標(biāo)為(﹣4,2

將x=﹣4代入拋物線的解析式得:y=2 ,

∴點P2在拋物線上.

由拋物線的對稱性可知:點P2與點P4關(guān)于直線x=1對稱,

∴P4的坐標(biāo)為(6,2 ),

當(dāng)點P3位于點C處時,兩三角形全等,所以點P3的坐標(biāo)為(0,﹣ ),

綜上所述點P的坐標(biāo)為:(﹣4,2 )或(6,2 )或(0,﹣ )時,以P、A、B為頂點的三角形與△ABD相似


【解析】(1)令y=0可求得點A、點B的橫坐標(biāo),令x=0可求得點C的縱坐標(biāo);(2)根據(jù)兩點之間線段最短作M點關(guān)于直線x=﹣2的對稱點M′,當(dāng)N(﹣2,N)在直線M′B上時,MN+BN的值最;(3)需要分類討論:△PAB∽△ABD、△PAB∽△ABD,根據(jù)相似三角形的性質(zhì)求得PB的長度,然后可求得點P的坐標(biāo).
【考點精析】通過靈活運用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2AB,BAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A、C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)請作出ABC關(guān)于y軸對稱的A′B′C′;

(3)點B′的坐標(biāo)為   

(4)ABC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D為邊BC的中點,過點A作射線AE,過點CCFAE于點F,過點BBGAE于點G,連接FD并延長,交BG于點H.

(1)求證:DF=DH;

(2)若∠CFD=120°,求證:DHG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預(yù)測今年鳳凰茶葉能夠暢銷,就用32000元購進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批鳳凰茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價多了10元.

(1)該鳳凰茶葉公司兩次共購進(jìn)這種鳳凰茶葉多少千克?

(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,OA=OB,C為AB中點,以O(shè)圓心,OC長為半徑作圓,AO與⊙O交于點E,直線OB與⊙O交于點F和D,連接EF、CF,CF與OA交于點G.

(1)求證:直線AB是⊙O的切線;
(2)求證:OD·EG=OG·EF;
(3)若AB=8,BD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點A( ,0),B(3 ,0),以AB為直徑的⊙G交y軸于C,D兩點.

(1)填空:請直接寫出⊙G的半徑r,圓心G的坐標(biāo):r=;G( , ).
(2)如圖2,直線y= 與x、y軸分別交于F、E兩點,且經(jīng)過圓上一點T( ,m),求證:直線EF是⊙G的切線;
(3)在(2)的條件下,如圖3,點M是⊙G優(yōu)弧 上的一個動點(不包括A、T兩點),連接AT、CM、TM,CM交AT于點N,試問,是否存在一個常數(shù)k,始終滿足CN·CM=k?如果存在,請求出k的值,如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案