【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DEAC E,DFAC且交ABF.

(1)求證:ADF 是等腰三角形.

(2) DF=10cm,求 DE的長.

【答案】(1)證明見解析;(2)5cm.

【解析】

(1)根據(jù)角平分線的定義、平行線的性質(zhì)、等腰三角形的判定定理證明;
(2)作DH⊥ABH,根據(jù)直角三角形的性質(zhì)求出BH,根據(jù)角平分線的性質(zhì)定理解答.

(1)證明:∵∠BAC=30°,D為角平分線上一點(diǎn),

∴∠BAD=CAD,

DFAC,

∴∠CAD=FDA,

∴∠BAD=FDA,

FA=FD,即△ADF是等腰三角形;

(2)解:作DHABH,

DFAC,

∴∠BFD=BAC=30°,

DH=DF=5,

D為角平分線上一點(diǎn),DEAC,DHAB,

DE=DH=5cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.
(1)如圖1,在半對角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點(diǎn)D,使得BD=BO.∠OBA的平分線交OA于點(diǎn)E,連結(jié)DE并延長交AC于點(diǎn)F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點(diǎn)D作DG⊥OB于點(diǎn)H,交BC于點(diǎn)G.當(dāng)DH=BG時(shí),求△BGH與△ABC的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 A,B,C 三點(diǎn)都在直線l 上,AC 與 BC 的長度之比為 2:3,D 是 AB 的中點(diǎn).若 AC4cm,則 CD 的長為 ________________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全球氣候變暖導(dǎo)致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長,每一個(gè)苔蘚都會(huì)長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時(shí)間(單位:年)。

(1)計(jì)算冰川消失16年后苔蘚的直徑為多少厘米?

(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1,線段AB的端點(diǎn)在格點(diǎn)上,按要求畫出格點(diǎn)三角形,并求其面積.

(1)在圖①中畫出一個(gè)以 AB為腰的等腰三角形 ABC,其面積為____________.

(2) 在圖②中畫出一個(gè)以AB為底的等腰三角形ABC,其面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在圖中作出△ABC 關(guān)于 y 軸對稱的△A1B1C1

(2)A1B1C1 的面積為___________.

(3) x 軸上找出一點(diǎn)P,使PA+PB的值最小直接畫出點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象在第一象限交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過點(diǎn)POB的垂線,交OA于點(diǎn)C.

(1)過點(diǎn)POA的垂線,垂足為H;

(2)線段PH的長度是點(diǎn)P____的距離,____是點(diǎn)C到直線OB的距離.線段PC,PH,OC這三條線段大小關(guān)系是___(“<”號連接)

查看答案和解析>>

同步練習(xí)冊答案