【題目】在平面直角坐標系中,直線 y = x與反比例函數(shù)的圖象交于點A2m.

1)求mk的值;

2)點PxPyP)是函數(shù)圖象上的任意一點,過點P作平行于x軸的直線,交直線y=x于點B.

①當yP = 4時,求線段BP的長;

②當BP3時,結(jié)合函數(shù)圖象,直接寫出點P 的縱坐標yP的取值范圍.

【答案】1m=2,k=4 ;(2)①BP=3 ; yP40<yP1

【解析】

1)將A點坐標代入直線y = x中求出m的值,確定出A的坐標,將A的坐標代入反比例解析式中求出k的值;

2)①由題可知點P 和點B的縱坐標都為4,將縱坐標分別代入兩個函數(shù)解析式得相應(yīng)橫坐標,即可得到點的坐標,求出BP.②根據(jù)函數(shù)與不等式的關(guān)系,即可得到答案.

1)解:將A2,m)代入直線 y = x,得m=2,所以A(2,2),

A2,2)代入反比例函數(shù),得:,則k=4

綜上所述,m=2,k=4.

2)①解:作圖:

yP = 4

P 和點B的縱坐標都為4

當將y=4,代入 x=1,P點坐標(1,4

當將y=4,代入y=xx=4,B點坐標(4,4

BP=3

②由圖可知BP3時,縱坐標yP的范圍: yP≥40<yP≤1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某班的同學想測量一教樓AB的高度.如圖,大樓前有一段斜坡,已知的長為16米,它的坡度.在離點45米的處,測得一教樓頂端的仰角為,則一教樓的高度約( )米(結(jié)果精確到0.1米)(參考數(shù)據(jù):,,

A. 44.1 B. 39.8 C. 36.1 D. 25.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy拋物線 y軸于點為A,頂點為D對稱軸與x軸交于點H

1求頂點D的坐標用含m的代數(shù)式表示);

2當拋物線過點1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離

3當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD3,點E是邊CD的中點,點PQ分別是射線DC與射線EB上的動點,連結(jié)PQ,AP,BP,設(shè)DPt,EQt

1)當點P在線段DE上(不包括端點)時.

①求證:APPQ;②當AP平分∠DPB時,求△PBQ的面積.

2)在點P,Q的運動過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請求出t的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,在中,,,,若的中點,與點.

1)求的長.

2)如圖2,點為射線上一動點,連接,線段繞點順時針旋轉(zhuǎn)交直線與點.

①若時,求的長:

②如圖3,連接交直線與點,當為等腰三角形時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O隨心點

1)當⊙O的半徑r=2時,A3,0),B0,4),C2),D)中,⊙O隨心點 ;

2)若點E4,3)是⊙O隨心點,求⊙O的半徑r的取值范圍;

3)當⊙O的半徑r=2時,直線y=- x+bb≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O隨心點,直接寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90,∠ABC45 ,點OAB的中點,過AC兩點向經(jīng)過點O的直線作垂線,垂足分別為EF.

1)如圖①,求證:EFAE+CF.

2)如圖②,圖③,線段EFAE、CF之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC邊上的一點,BE4,EC8,將正方形邊AB沿AE折疊到AF,延長EFDCG,連接AG,現(xiàn)在有如下四個結(jié)論:①∠EAG45°;②FGFC;③FCAG;④SGFC14.其中結(jié)論正確的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=x2+k﹣1x﹣k與直線y=kx+1交于AB兩點,點A在點B的左側(cè).

1)如圖1,當k=1時,直接寫出AB兩點的坐標;

2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;

3)如圖2,拋物線y=x2+k﹣1x﹣kk0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案