【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC,在AC、BC邊上分別截取CD=CE,連結DE.將△DCE繞著點C順時針旋轉θ角,連結BE、AD.

(1)當0°<θ<90°時,如圖②,直線BE交直線AD于點F.

①求證:△ACD≌△BCE.

②求證:AF⊥BE.

(2)當0°<θ<360°,AC=5,CD=3,四邊形CDFE是正方形時,直接寫出AF的長度.

【答案】(1)證明見解析;(2)1.

【解析】

試題分析: (1)①根據(jù)旋轉的性質和已知,運用SAS證明即可;②由問題原型中的結論:△ACE≌△BCE得出∠BFO=∠ACB,結合等量代換進行求解即可;

(2)運用CD∥BE結合初步探究中的結論,可證CD⊥AF,結合勾股定理即可求解.

試題解析:(1)①如圖②,

∵△DCE繞著點C順時針旋轉θ角,由旋轉的性質可知,

∴∠ACD=∠BCE=θ,

又∵AC=BC,CD=CE,

在△ACD和△BCE中,

,

∴△ACD≌△BCE;

②如圖②,設AF與BC交點于O,

∵△ACD≌△BCE,

∴∠DAC=∠EBC,

∵∠AOC=∠BOF,

∴∠BFO=∠ACB=90°,

∴AF⊥BE;

(2)如圖③,

∵AC=5,CD=3,四邊形CDFE是正方形時,

∵AD⊥CD,

∴AD=,

∴AF=4+3=7,

如圖4,

∴AF=4﹣3=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是( )

A. 過一點有且只有一條直線與已知直線垂直

B. 三角形任意兩邊之和小于第三邊

C. 三角形的一個外角大于它的任何一個內角

D. 平行與同一條直線的兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)3、-2、0、1、4的中位數(shù)是(

A. 0B. 1C. -2D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列一元二次方程中,沒有實數(shù)根的是( )

A. 4x2﹣5x+2=0 B. x2﹣6x+9=0 C. 5x2﹣4x﹣1=0 D. 3x2﹣4x+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx與x軸交于O、A兩點,與直線y=x交于點B,點A、B的坐標分別為(3,0)、(2,2).點P在拋物線上,過點P作y軸的平行線交射線OB于點Q,以PQ為邊向右作矩形PQMN,且PN=1,設點P的橫坐標為m(m>0,且m≠2).

(1)求這條拋物線所對應的函數(shù)表達式.

(2)求矩形PQMN的周長C與m之間的函數(shù)關系式.

(3)當矩形PQMN是正方形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在某次數(shù)學活動課中,小明為了測量校園內旗桿AB的高度,站在教學樓CD上的E處測得旗桿底端B的仰角∠BEF的度數(shù)為45°,測得旗桿頂端A的仰角∠AEF的度數(shù)為17°,旗桿底部B處與教學樓底部C處的水平距離BC為9m,求旗桿的高度(結果精確到0.1m).

【參考數(shù)據(jù):sin17°=0.29,cos17°=0.96,tan17°=0.31】

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中,紅色、黑色、白色的玻璃球共有60個,除顏色外其它完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色,黑色球的概率穩(wěn)定在15%40%,則口袋中白色球的個數(shù)很可能是( 。

A. 25 B. 26 C. 29 D. 27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A∶∠B∶∠C=112,則ABC的形狀是( ).

A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正多邊形的內角和為540°,那么從任一頂點可引( )條對角線。

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案