【題目】如圖,在△ABC中,點D是邊BC的中點,點E在△ABC內(nèi),AE平分∠BAC,CE⊥AE,點F在邊AB上,EF∥BC.
(1)求證:四邊形BDEF是平行四邊形;
(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.
【答案】(1)見解析;(2)BF=(AB﹣AG)=(AB﹣AC).見解析
【解析】
試題分析:(1)證明△AGE≌△ACE,根據(jù)全等三角形的性質(zhì)可得到GE=EC,再利用三角形的中位線定理證明DE∥AB,再加上條件EF∥BC可證出結(jié)論;
(2)先證明BF=DE=BG,再證明AG=AC,可得到BF=(AB﹣AG)=(AB﹣AC).
(1)證明:延長CE交AB于點G,
∵AE⊥CE,
∴∠AEG=∠AEC=90°,
在△AEG和△AEC中,
∴△AGE≌△ACE(ASA).
∴GE=EC.
∵BD=CD,
∴DE為△CGB的中位線,
∴DE∥AB.
∵EF∥BC,
∴四邊形BDEF是平行四邊形.
(2)解:BF=(AB﹣AC).
理由如下:
∵四邊形BDEF是平行四邊形,
∴BF=DE.
∵D、E分別是BC、GC的中點,
∴BF=DE=BG.
∵△AGE≌△ACE,
∴AG=AC,
∴BF=(AB﹣AG)=(AB﹣AC).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O1與⊙O2外切,O1O2=8cm,⊙O1的半徑為5cm,則⊙O2的半徑是( )
A.13cm
B.8cm
C.6cm
D.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞投行候任行長金立群12月1日在北京表示,亞投行將在12月底前正式成立,計劃在2016年第二季度開始試營,計劃總投入1000億美元,中國計劃投入500億美元,折合人民幣約3241億元,將3241億元用科學(xué)記數(shù)法表示為( )元.
A.3.241×103
B.0.3241×104
C.3.241×1011
D.3.241×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實數(shù)值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)科學(xué)家估計,地球年齡大約是4 600 000 000年,這個數(shù)用科學(xué)記數(shù)法表示為( )
A.4.6×108
B.46×108
C.4.6×109
D.0.46×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(2,3),B(5,0),C(, 2).
①當(dāng)時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;
(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( 。
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com