【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開(kāi)挖點(diǎn)C在AB的延長(zhǎng)線上,設(shè)想過(guò)C點(diǎn)作直線AB的垂線L,過(guò)點(diǎn)B作一直線(在山的旁邊經(jīng)過(guò)),與L相交于D點(diǎn),經(jīng)測(cè)量ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開(kāi)挖?(≈1.414,精確到1米)

【答案】直線L上距離D點(diǎn)566米的C處開(kāi)挖.

【解析】

試題由已知條件易得BCD是等腰直角三角形,再根據(jù)勾股定理可得CD2+BC2=BD2,由BD=800米代入進(jìn)行計(jì)算即可

試題解析:CDAC,

∴∠ACD=90°,

∵∠ABD=135°,

∴∠DBC=45°,

∴∠D=45°,

CB=CD,

在RtDCB中:CD2+BC2=BD2,

2CD2=8002,

CD=400≈566(米),

答:直線L上距離D點(diǎn)566米的C處開(kāi)挖.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解答過(guò)程:如圖甲,ABCD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.

解:過(guò)點(diǎn)PPEAB

ABCD,

PEABCD(平行于同一條直線的兩條直線互相平行).

∴∠1+A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

2+C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).

∴∠1+A+2+C=360°.

又∵∠APC=1+2,

∴∠APC+A+C=360°.

如圖乙和圖丙,ABCD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,“中國(guó)海監(jiān)50”于上午11時(shí)30分在南海海域A處巡邏,觀測(cè)到島礁B在北偏東60°,該船以每小時(shí)10海里的速度向正東航行到C處,觀測(cè)島礁B在北偏東30°,繼續(xù)向正東航行到D處時(shí),再觀測(cè)到島礁B在北偏西30°,當(dāng)海監(jiān)船到達(dá)C處時(shí)恰與島礁B相距20海里,請(qǐng)你分別確定“中國(guó)海監(jiān)50”從A處到達(dá)C處和D處所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正整數(shù)能表示成兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)為“神秘?cái)?shù)”.

如:

因此,4,12,20這三個(gè)數(shù)都是神秘?cái)?shù).

(1)282012這兩個(gè)數(shù)是不是神秘?cái)?shù)?為什么?

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為(其中為非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是4的倍數(shù),請(qǐng)說(shuō)明理由.

(3)兩個(gè)連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘?cái)?shù)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)如圖①,在△ABC中,點(diǎn)D、F在AB上,點(diǎn)E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,則EG= =

(2)如圖②,在△ABC中點(diǎn)D、F在AB上,點(diǎn)E,G在AC上,且DE∥FG∥BC,以AD,DF,F(xiàn)B為邊構(gòu)造△ADM(即AM=BF,MD=DF),以AE,EG,GC為邊構(gòu)造△AEN(即AN=GC,NE=EG),求證:∠M=∠N.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家藍(lán)莓采摘園的草莓品質(zhì)相同,銷(xiāo)售價(jià)格都是每千克30元,“五一”假期,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園購(gòu)買(mǎi)60元的門(mén)票,采摘的藍(lán)莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘的藍(lán)莓超過(guò)10千克后,超過(guò)部分五折優(yōu)惠,優(yōu)惠期間,設(shè)某游客的藍(lán)莓采摘量為(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元).

1)當(dāng)采摘量超過(guò)10千克時(shí),求的關(guān)系式;

2)若要采摘40千克藍(lán)莓,去哪家比較合算?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間有技術(shù)工人85人,平均每天每人可加工甲種部件16個(gè)或乙種部件10個(gè),2個(gè)甲種部件和3個(gè)乙種部件配成一套,問(wèn)加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的自變量x滿足 ≤x≤2時(shí),函數(shù)值y滿足 ≤y≤1,則下列函數(shù)①y= x,②y= ,③y= ,④y=﹣ x+ ,⑤y=(x﹣1)2 , 符合條件的函數(shù)有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為acm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案