【題目】規(guī)定兩數(shù)a、b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.

例如:因?yàn)?/span>,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(5,125)= ,(-2,4)= ,(-2,-8)=

(2)小明在研究這種運(yùn)算時發(fā)現(xiàn)一個現(xiàn)象:,他給出了如下的證明:

設(shè),則,即

,即,

請你嘗試運(yùn)用上述這種方法說明下面這個等式成立的理由.

(4,5)+(4,6)=(4,30)

【答案】(1)3;2;3;(2)見解析;

【解析】

(1)分別計(jì)算左邊與右邊式子,即可做出判斷;

(2)設(shè),根據(jù)同底數(shù)冪的乘法法則即可求解.

解:(1)53=125,

(5,125)=3;

(-2)2=4,

(-2,4)=2;

∵(-2)3=-8,

(-2,-8)=3;

(2)設(shè)

,

,

,

,

,

(4,5)+(4,6)=(4,30)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。

A. abc345 B. A:∠B:∠C345

C. A+B=∠C D. abc12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇科版九年級下冊數(shù)學(xué)課本91頁有這樣一道習(xí)題:

(1)復(fù)習(xí)時,小明與小亮、數(shù)學(xué)老師交流了自己的兩個見解,并得到了老師的認(rèn)可:

①可以假定正方形的邊長AB=4a,則AEDE=2a,DFa,利用兩邊分別成比例且夾角相等的兩個三角形相似可以證明ABEDEF;請結(jié)合提示寫出證明過程

②圖中的相似三角形共三對,而且可以借助于ABEDEF中的比例線段來證明EBF與它們相似證明過程如下:

(2)交流之后,小亮嘗試對問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請你解答:

已知:如圖,在矩形ABCD中,EAD的中點(diǎn),EFECABF,連結(jié)FC

ABAE

①求證:AEFECF

②設(shè)BC=2,ABa,是否存在a值,使得AEFBFC相似.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線,的平分線交于點(diǎn)

1)求證:;

2)如圖2,過點(diǎn)于點(diǎn),交于點(diǎn),探究之間的數(shù)量關(guān)系,并證明你的猜想;

3)如圖3,在(2)的條件下,的平分線交延長線于點(diǎn),延長線上一點(diǎn),,將延直線翻折,所得直線交,交,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧遠(yuǎn)縣教育局要求各學(xué)校加強(qiáng)對學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對安全知識的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì).他將統(tǒng)計(jì)結(jié)果分為三類,A:熟悉,B:了解較多,C:一般了解.圖①和圖②是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級共有多少名學(xué)生;

(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,計(jì)算“了解較多”部分所對應(yīng)的扇形圓心角的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉弓的過程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長.如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時,有AD1=30cm,B1D1C1=120°.

(1)圖2中,弓臂兩端B1,C1的距離為_____cm.

(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形ABCD,下列作法中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊與正方形重疊,其中,兩點(diǎn)分別在,上,且,若,則的面積為(

A. 1B.

C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線l:y=(x﹣h)2﹣4(h為常數(shù))

(1)如圖1,當(dāng)拋物線l恰好經(jīng)過點(diǎn)P(1,﹣4)時,lx軸從左到右的交點(diǎn)為A、B,與y軸交于點(diǎn)C.

①求l的解析式,并寫出l的對稱軸及頂點(diǎn)坐標(biāo).

②在l上是否存在點(diǎn)D,使SABD=SABC , 若存在,請求出D點(diǎn)坐標(biāo),若不存在,請說明理由.

③點(diǎn)Ml上任意一點(diǎn),過點(diǎn)MME垂直y軸于點(diǎn)E,交直線BC于點(diǎn)D,過點(diǎn)Dx軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點(diǎn)M的坐標(biāo).

(2)設(shè)l與雙曲線y=有個交點(diǎn)橫坐標(biāo)為x0且滿足3≤x0≤5,通過l位置隨h變化的過程,直接寫出h的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案