【題目】計算:
(1)22+(﹣4)+(﹣2)+4
(2)(﹣ +1 )×(﹣24)
(3)3﹣6÷(﹣2)×|﹣ |
(4)2a﹣(3b﹣a)+b
(5)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2
(6)(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3

【答案】
(1)解:22+(﹣4)+(﹣2)+4=20
(2)解:(﹣ +1 )×(﹣24)

=18﹣44+21

=﹣5;


(3)解:3﹣6÷(﹣2)×|﹣ |

=3+3×

=3+1.5

=4.5


(4)解:2a﹣(3b﹣a)+b

=2a﹣3b+a+b

=3a﹣2b


(5)解:3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2

=3x2﹣3y2+y2﹣z2﹣2z2+2y2

=3x2﹣3z2


(6)解:(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3

=(﹣ )×16﹣0.25×(﹣5)×(﹣64)

=﹣10﹣80

=﹣90.


【解析】(1)根據(jù)有理數(shù)加法法則計算即可;(2)利用乘法分配律計算即可;(3)先化簡絕對值,再算乘除,最后計算加法即可;(4)(5)先去括號,再合并同類項即可;(6)先算乘方,再算乘法,最后算加減.
【考點精析】認(rèn)真審題,首先需要了解有理數(shù)的四則混合運算(在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減),還要掌握整式加減法則(整式的運算法則:(1)去括號;(2)合并同類項)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】未來三年,國家將投入8450億元用于緩解群眾“看病難、看病貴”的問題.將8450億元用科學(xué)記數(shù)法表示為(
A.0.845×104億元
B.8.45×103億元
C.8.45×104億元
D.84.5×102億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于點A(-4,0)、B(6,0)兩點,與y軸交于點C

(1)如圖l,求拋物線的解析式;

(2)如圖2,點P為第一象限拋物線上一點,連接PC、PAPAy軸于點F,設(shè)點P的橫坐標(biāo)為t,CPF的面積為S.求St的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接BC,過點PPD//y軸變BC于點D,點HAF中點,且點N(01),連接NHBH,將NHB繞點H逆時針旋轉(zhuǎn),使角的一條邊H落在射線HF,另一條邊HN變拋物線于點Q,當(dāng)BH=BD時,求點Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各對數(shù)中,數(shù)值相等的是(
A.23和32
B.(﹣2)2和﹣22
C.﹣(﹣2)和|﹣2|
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)1,1,2,x,5,y…滿足“從第三個數(shù)起,每個數(shù)都等于它前面的兩個數(shù)之和”,那么這組數(shù)中y表示的數(shù)為( )
A.8
B.9
C.13
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】購買1個單價為a元的面包和3瓶單價為b元的飲料,所需錢數(shù)為元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 中位數(shù)就是一組數(shù)據(jù)中最中間的一個數(shù)

B. 89,910,10,11這組數(shù)據(jù)的眾數(shù)是9

C. 如果x1,x2,x3,xn的平均數(shù)是x,那么(x1x)(x2x)(xnx)0

D. 一組數(shù)據(jù)的方差是這組數(shù)據(jù)的平均數(shù)的平方

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后解答問題(1)、(2)。 解方程:|x+3|=2.
解:當(dāng)x+3≥0時,原方程可化為:x+3=2,解得x=﹣1;
當(dāng)x+3<0時,原方程可化為:x+3=﹣2,解得x=﹣5.
所以原方程的解是x=﹣1,x=﹣5.
(1)解方程:|3x﹣1|﹣5=0;
(2)探究:當(dāng)b為何值時,方程|x﹣2|=b+1 ①無解;②只有一個解;③有兩個解.

查看答案和解析>>

同步練習(xí)冊答案