【題目】直線y=x+8分別與x軸、y軸相交于點M,N,邊長為4的正方形OABC一個頂點O在坐標系的原點,直線AN與MC相交于點P,若正方形繞著點O旋轉(zhuǎn)一周,則PC長度的最小值是_____.
【答案】4﹣4.
【解析】
首先證明△MOC≌△NOA,推出∠MPN=90°,推出P在以MN為直徑的圓上,所以當圓心G,點P,C三點共線時,PC長度的最小值.求出此時的PC即可.
在△MOC和△NOA中,
∵,∴△MOC≌△NOA(SAS),∴∠CMO=∠ANO.
∵∠CMO+∠MCO=90°,∠MCO=∠NCP,
∴∠NCP+∠CNP=90°,
∴∠MPN=90°,
∴MP⊥NP.
在正方形旋轉(zhuǎn)的過程中,同理可證,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,
∴P在以MN為直徑的圓上.
∵直線y=x+8分別與x軸、y軸相交于點M,N,
∴M(﹣8,0),N(0,8),
∴圓心G為(﹣4,4),半徑為4,
∵PG﹣GC≤PC,
∴當圓心G,點P,點C三點共線時,PC最。
∵GN=GM,CN=CO=4,∴GCOM=4,
這個最小值為GP﹣GC=44.
故答案為:44.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)用配方法求其圖象的頂點C的坐標,并描述該函數(shù)的函數(shù)值隨自變量的增減而變化的情況;
(2)求函數(shù)圖象與x軸的交點A,B的坐標,及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”共享單車已經(jīng)成了很多人出行的主要選擇.
(1)考慮到共享單車市場競爭激烈,摩拜公司準備用不超過60000元的資金再購進A,B兩種規(guī)格的自行車100輛,且A型車不超過60輛.已知A型的進價為500元/輛,B型車進價為700元/輛,設(shè)購進A型車m輛,求出m的取值范圍;
(2)已知A型車每月產(chǎn)生的利潤是100元/輛,B型車每月產(chǎn)生的利潤是90元/輛,在(1)的條件下,求公司每月的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論 ①a+b+c<0②a﹣b+c<0③b+2a<0④abc>0⑤b2<4ac,其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°,
(1)如圖①,若D為弧AB的中點,求∠ABC和∠ABD的大小;
(2)如圖②,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,是以點(0,3)為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料閱讀:
類比是數(shù)學中常用的數(shù)學思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運算方法,得到多項式與多項式的加、減、乘、除的運算方法.
理解應(yīng)用:
(1)請仿照上面的豎式方法計算:;
(2)已知兩個多項式的和為,其中一個多項式為.請用豎式的方法求出另一個多項式.
(3)已知一個長為,寬為的矩形,將它的長增加8.寬增加得到一個新矩形,且矩形的周長是周長的3倍(如圖).同時,矩形的面積和另一個一邊長為的矩形的面積相等,求的值和矩形的另一邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)
(2)
(3)(6x-1)2-25=0
(4)
(5)
(6)
(7) ++(﹣1)0﹣2sin45°
(8)6tan230°-cos30°·tan60°-2sin 45°+cos60°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com