(2012•丹東)如圖,點(diǎn)A是雙曲線y=
k
x
在第二象限分支上的任意一點(diǎn),點(diǎn)B、點(diǎn)C、點(diǎn)D分別是點(diǎn)A關(guān)于x軸、坐標(biāo)原點(diǎn)、y軸的對(duì)稱點(diǎn).若四邊形ABCD的面積是8,則k的值為(  )
分析:先判定出四邊形ABCD是矩形,再根據(jù)反比例函數(shù)的系數(shù)的幾何意義,用k表示出四邊形ABCD的面積,然后求解即可.
解答:解:∵點(diǎn)B、點(diǎn)C、點(diǎn)D分別是點(diǎn)A關(guān)于x軸、坐標(biāo)原點(diǎn)、y軸的對(duì)稱點(diǎn),
∴四邊形ABCD是矩形,
∵四邊形ABCD的面積是8,
∴4×|-k|=8,
解得|k|=2,
又∵雙曲線位于第二、四象限,
∴k<0,
∴k=-2.
故選D.
點(diǎn)評(píng):本題考查了反比例函數(shù)系數(shù)的幾何意義,過雙曲線上的任意一點(diǎn)分別向兩條坐標(biāo)作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,利用k表示出四邊形的面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過點(diǎn)C.過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且
BC
=
CD
,弦AD的延長線交切線PC于點(diǎn)E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說明理由;
(2)若⊙O的半徑為2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖,菱形ABCD的周長為24cm,對(duì)角線AC、BD相交于O點(diǎn),E是AD的中點(diǎn),連接OE,則線段OE的長等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•丹東)如圖,邊長為6的正方形ABCD內(nèi)部有一點(diǎn)P,BP=4,∠PBC=60°,點(diǎn)Q為正方形邊上一動(dòng)點(diǎn),且△PBQ是等腰三角形,則符合條件的Q點(diǎn)有
5
5
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案