【題目】港珠澳大橋(英文名稱:Hong Kong-Zhuhai-Macao Bridge)是中國境內(nèi)一座連接香港、廣東珠海和澳門的橋隧工程,位于中國廣東省珠江口伶洋海域內(nèi),為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段.港珠澳大橋于日動工建設(shè);于日實現(xiàn)主體工程全線貫通;于日完成主體工程驗收;同年日上午時開通運營.廣東某校數(shù)學(xué)“綜合與實踐”小組的同學(xué)把“測量港珠澳大橋某一段斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間完成該橋斜拉索實地測量,測量結(jié)果如下表

項目

內(nèi)容

課題

測量港珠澳大橋某一段斜拉索頂端到橋面的距離

測量示意圖


說明:兩側(cè)斜拉索相交于點,分別與橋面交于,兩點,且點,,在同一豎直平面內(nèi)

測量數(shù)據(jù)

的度數(shù)

的度數(shù)

的長度

1)請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點的距離(參考數(shù)據(jù):,,,,);

2)該小組要寫出一份完整的課題活動報告,除上表的項目外,你認(rèn)為還需要補充哪些項目(寫出一個即可)?

【答案】1249.6m;(2)測量工具

【解析】

(1)過點CCDAB于點D,構(gòu)造直角三角形,利用∠A的正弦即可求解;

(2)根據(jù)測量需要填寫即可,這是一個開放性的問題,只要合理都行.

解:(1)如圖所示,過點CCDAB于點D

RtACD中,∠ADC=90°,∠A=37°,AC=416

,

CD=AC·sin37°≈416×0.6=249.6m

2)測量工具、計算過程、人員分工、指導(dǎo)老師、活動經(jīng)費、活動感受等.(答案合理即可)

【點晴】

本題考查了三角函數(shù)的實際應(yīng)用,構(gòu)造直角三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠每五年需淘汰一批同款的舊打印機并購買新機.購買新機時,若同時配買墨盒,每盒元,且最多可配買盒;若非同時配買,則每盒需元.根據(jù)該廠以往的記錄,臺同款打印機正常工作五年消耗的墨盒數(shù)如下表:

1)以這臺打印機五年消耗的墨盒數(shù)為樣本,估計一臺該款打印機正常工作五年消耗的墨盒數(shù)不大于的概率;

2)如果每臺打印機購買新機時配買的墨盒只能供本機使用,試以這臺打印機消耗墨盒費用的平均數(shù)作為決策依據(jù),說明購買臺該款打印機時,應(yīng)同時配買盒還是盒墨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個圓柱體污水管道的橫截面,管道中有部分污水,污水液面橫截面寬度()污水管道直徑為則弦所對圓周角的大小為_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點在直線上,過點軸于點,作等腰直角三角形 (與原點重合),再以為腰作等腰直角三角形,以為腰作等腰直角三角形,按照這樣的規(guī)律進(jìn)行下去,那么的坐標(biāo)為( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“普洱茶”是云南有名的特產(chǎn),某網(wǎng)店專門銷售某種品牌的普洱茶,成本為30/盒,每天銷售()與銷售單價()之間存在一次函數(shù)關(guān)系,如圖所示.

(1)之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天該種普洱茶的銷售量不低于240盒,該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出500元給扶貧基金會,當(dāng)銷售單價為多少元時,每天獲取的凈利潤最大,最大凈利潤是多少?(:凈利潤=總利潤-捐款)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于,兩點,過點的直線與拋物線交于點,其中點的坐標(biāo)是,點的坐標(biāo)是,拋物線的頂點為點

1)求拋物線和直線的解析式.

2)若點是拋物線上位于直線上方的一個動點,求的面積的最大值及此時點的坐標(biāo).

3)若拋物線的對稱軸與直線相交于點,點為直線上的任意一點,過點交拋物線于點,以,,為頂點的四邊形能否為平行四邊形?若能,求出點的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的與軸交于點,與軸交于點,

1)求該拋物線的解析式及頂點的坐標(biāo);

2)若是線段上一動點,過軸的平行線交拋物線于點,交于點,設(shè)時,的面積為.求關(guān)于的函數(shù)關(guān)系式;若有最大值,請求出的最大值,若沒有,請說明理由;

3)若軸上一個動點,過作射線交拋物線于點,隨著點的運動,在軸上是否存在這樣的點,使以 、、為頂點的四邊形為平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.

(1)求ABC的度數(shù);

(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).

(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點EBC邊上一動點,連接AE,沿AE將△ABE翻折得△AGE,連接DG,作△AGD的外接⊙O,⊙OAE于點F,連接FG、FD

1)求證∠AGD=∠EFG

2)求證△ADF∽△EGF;

3)若AB3,BE1,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案