【題目】梯形ABCD中,ABDCAD=BC,以AD為直徑的⊙OABE,O的切線EFBCF,求證:

1EFBC; 2BF·BC=BE·AE.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)已知利用切線的性質(zhì)可得到∠BEF+B=90°,即EFBC;
2)利用兩組角對應(yīng)相等的兩個三角形相似得到△ADE∽△BEF,再根據(jù)相似三角形的對應(yīng)邊成比例和AD=BC,即可得到BFBC=BEAE

證明:(1)連接OE,

∵∠DEF+DEO=90°,∠ADE+OEA=90°,

∴∠DEF=OEA

OA=OE,AD=BC

∴∠OEA=A=B

∴∠A=B=DEF

∵∠DEF+BEF=90°,

∴∠BEF+B=90°

EFBC

2)∵∠A=B,∠AED=BFE=90°,

∴△ADE∽△BEF

AD=BC

BFBC=BEAE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠C90°,點DAC上,∠CBD=∠A,過A、D兩點的圓的圓心OAB.

1)判斷BD所在直線與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若AE4,∠A30°,求圖中由BD、BE、弧DE圍成陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC2,點MBC上,連接AM,作∠AMN=∠AMB,點N在直線AD上,MNCD于點E

(1)求證:△AMN是等腰三角形;

(2)求證:AM22BMAN;

(3)當(dāng)MBC中點時,求ME的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,△OAB的頂點坐標(biāo)分別為O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1△OAB是關(guān)于點P為位似中心的位似圖形.

(1)在圖中標(biāo)出位似中心P的位置,并寫出點P的坐標(biāo)及△O1A1B1△OAB的相似比;

(2)以原點O為位似中心,在y軸的左側(cè)畫出△OAB的一個位似△OA2B2,使它與△OAB的位似比為2:1,并寫出點B的對應(yīng)點B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有時我們可以看到這樣的轉(zhuǎn)盤游戲:如圖所示,你只要出1元錢就可以隨意地轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止時指針落在哪個區(qū)域,你就按照這個區(qū)域所示的數(shù)字相應(yīng)地順時針跳過幾格,然后按照下圖所示的說明確定你的資金是多少.例如,當(dāng)指針指向 “2”區(qū)域時候,你就向前跳過兩個格到“5”,按獎金說明,“5”所示的資金為0.2元,你就可以得0.2.請問這個游戲公平嗎?能否用你所學(xué)的知識揭示其中的秘密?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(﹣1,0),(3,0),(1,﹣5)三點.

1)求該二次函數(shù)的解析式;

2)求該圖象的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點Ax軸上,OA=4,AB=3.動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發(fā),以每秒125個單位長度的速度,沿OB向終點B移動.當(dāng)兩個動點運(yùn)動了x秒(0x4)時,解答下列問題:

1)求點N的坐標(biāo)(用含x的代數(shù)式表示);

2)設(shè)△OMN的面積是S,求Sx之間的函數(shù)表達(dá)式;當(dāng)x為何值時,S有最大值?最大值是多少?

3)在兩個動點運(yùn)動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠BAC90°,ABAC1,點DBC邊上的一個動點(不與B, C點重合),∠ADE45°.

1)求證:△ABD∽△DCE

2)設(shè)BDx,AEy,求y關(guān)于x的函數(shù)關(guān)系式;

3)當(dāng)△ADE是等腰三角形時,請直接寫出AE的長.

查看答案和解析>>

同步練習(xí)冊答案