【題目】如圖,在△ABC中,BE、CE 分別是∠ABC 和∠ACB 的平分線,過(guò)點(diǎn) E 作 DF∥BC,交 AB 于 D,交 AC 于 F,若 AB=5,AC=4,則△ADF周長(zhǎng)為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若點(diǎn)P為四邊形ABCD內(nèi)一點(diǎn),且滿足∠APB+∠CPD=180°, 則稱(chēng)點(diǎn)P為四邊形ABCD的一個(gè)“互補(bǔ)點(diǎn)”.
(1)如圖1,點(diǎn)P為四邊形ABCD的一個(gè)“互補(bǔ)點(diǎn)”,∠APD=63°,求∠BPC的度數(shù).
(2)如圖2,點(diǎn)P是菱形ABCD對(duì)角線上的任意一點(diǎn).求證:點(diǎn)P為菱形ABCD的一個(gè)“互補(bǔ)點(diǎn)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建設(shè)銀行的某儲(chǔ)蓄員小張?jiān)谵k理業(yè)務(wù)時(shí),約定存入為正,取出為負(fù). 2019年10月29日,他先后辦理了七筆業(yè)務(wù): +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.
(1)若他早上領(lǐng)取備用金4000元,那么下班時(shí)應(yīng)交回銀行_________元錢(qián).
(2)請(qǐng)判斷在這七次辦理業(yè)務(wù)中,小張?jiān)诘?/span>_______次業(yè)務(wù)辦理后手中現(xiàn)金最多,第_________次業(yè)務(wù)辦理后手中現(xiàn)金最少.
(3)若每辦一件業(yè)務(wù),銀行發(fā)給業(yè)務(wù)量的0.2%作為獎(jiǎng)勵(lì),小張這天應(yīng)得獎(jiǎng)金多少元?
(4)若記小張第一次辦理業(yè)務(wù)前的現(xiàn)金為0點(diǎn),用折線統(tǒng)計(jì)圖表示這7次業(yè)務(wù)辦理中小張手中現(xiàn)金的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某博物館的票價(jià)是:成人票元,學(xué)生票元,滿人可以購(gòu)買(mǎi)團(tuán)體票(不足人可按人計(jì)算,票價(jià)打折),某班在位老師帶領(lǐng)下去博物館,學(xué)生人數(shù)為人.
如果學(xué)生人數(shù)大于人,該班買(mǎi)票至少應(yīng)付 元.(用含 的代數(shù)式表示)
如果學(xué)生人數(shù)小于人,該班買(mǎi)票至少應(yīng)付 元.(用含的代數(shù)式表示)
如果學(xué)生人數(shù)為人,該班買(mǎi)票至少應(yīng)付多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五邊形中,,,,在,上分別找一點(diǎn),,使得的周長(zhǎng)最小時(shí),則的度數(shù)為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下列證明過(guò)程補(bǔ)充完整.已知:如圖,B、C、E三點(diǎn)在同一直線上,A、F、E三點(diǎn)在同一直線上,∠1=∠2=∠E,∠3=∠4.求證:AB∥CD.
證明:∵∠2=∠E(已知)
∴ ∥BC( )
∴∠3=∠ ( )
∵∠3=∠4(已知)
∴∠4=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ,即∠BAF=∠
∴∠4=∠ (等量代換)
∴ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列結(jié)論:①若,則互為相反數(shù);②若,則且;③;④絕對(duì)值小于10的所有整數(shù)之和等于0;⑤3與-5是同類(lèi)項(xiàng).其中正確的結(jié)論有( )個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若兩個(gè)三角形,有兩邊相等且其中一組等邊所對(duì)的角對(duì)應(yīng)相等,但不是全等三角形,我們就稱(chēng)這兩個(gè)三角形為偏差三角形.
(1)如圖1,已知A(3,2),B(4,0),請(qǐng)?jiān)?/span>x軸上找一個(gè)C,使得△OAB與△OAC是偏差三角形.你找到的C點(diǎn)的坐標(biāo)是______,直接寫(xiě)出∠OBA和∠OCA的數(shù)量關(guān)系______.
(2)如圖2,在四邊形ABCD中,AC平分∠BAD,∠D+∠B=180°,問(wèn)△ABC與△ACD是偏差三角形嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,在四邊形ABCD中,AB=DC,AC與BD交于點(diǎn)P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且點(diǎn)C到直線BD的距離是3,求△ABC與△BCD的面積之和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com