【題目】某手機(jī)經(jīng)銷商計劃同時購進(jìn)一批甲、乙兩種型號手機(jī),若購進(jìn)2部甲型號手機(jī)和5部乙型號手機(jī),共需要資金6000元;若購進(jìn)3部甲型手機(jī)和2部乙型手機(jī),共需要資金4600

(1) 求甲、乙型號手機(jī)每部進(jìn)價為多少元?

(2) 為了提高利潤,該店計劃購進(jìn)甲、乙型號手機(jī)銷售,預(yù)計用不多于1.84萬元且不少于1.76萬元的資金購進(jìn)這兩種手機(jī)共20部,請問有幾種進(jìn)貨方案?

【答案】1購進(jìn)一部型手機(jī)和一部型手機(jī)分別為1000元,800元;2即共有3種方案: 購進(jìn)甲 8,購進(jìn)12部;購進(jìn)9,購進(jìn) 11部;購進(jìn)甲10購進(jìn) 10.

【解析】

(1)設(shè)購進(jìn)一部甲型手機(jī)和一部乙型手機(jī)分別為x元、y元,根據(jù)題中的兩個等量關(guān)系:①購買2部甲型手機(jī)的費用+購買5部乙型手機(jī)的費用=6000;②購買3部甲型手機(jī)的費用+購買2部乙型手機(jī)的費用=4600列出方程組解方程組即可求得本題答案;

(2)設(shè)購進(jìn)甲型手機(jī)a部,則購進(jìn)乙型手機(jī)(20-a)結(jié)合(1)中所得兩種型號手機(jī)的單價,表示出購買這些手機(jī)所需的總費用,結(jié)合題中已知條件:總費用不超過1.84萬元和不少于1.76萬元列出不等式組,解不等式組求得整數(shù)解即可得到所求進(jìn)貨方案;

1)設(shè)購進(jìn)一部型手機(jī)和一部型手機(jī)分別需要x、y元, 根據(jù)題意得

解方程組得:,

答:購進(jìn)一部型手機(jī)和一部型手機(jī)分別需要1000元,800元.

2)設(shè)購進(jìn)型手機(jī)a部,則購進(jìn)型手機(jī)180a,根據(jù)題意得:

,

解不等式組得:,

a只能取整數(shù),

=8,910

即共有3種方案: ①購進(jìn)甲 8,12;②購進(jìn)甲9, 11;③購進(jìn)甲 10, 10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,BC=4,∠B=60°,點E是邊AB上的一點,點F是邊CD上一點,將平行四邊形ABCD沿EF折疊,得到四邊形EFGC,點A的對應(yīng)點為點C,點D的對應(yīng)點為點G,則△CEF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,C為線段BE上的一點,分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點,連接MN

(1)線段MN和GD的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)將圖①中的正方形CEFG繞點C逆時針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點C旋轉(zhuǎn)一周,其他條件不變,直接寫出MN的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張同學(xué)學(xué)完統(tǒng)計知識后,隨機(jī)調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形統(tǒng)計圖和條形統(tǒng)計圖:

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)小張同學(xué)共調(diào)查了   名居民的年齡,扇形統(tǒng)計圖中a=   ;

(2)補(bǔ)全條形統(tǒng)計圖,并注明人數(shù);

(3)若該轄區(qū)年齡在0~14歲的居民約有3500人,請估計該轄區(qū)居民人數(shù)是多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,設(shè)一質(zhì)點MP0(1,0)處向上運動1個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處,……如此繼續(xù)運動下去.設(shè)Pn(xn,yn),n=1、2、3、……,則x1x2+……+x2014x2015的值為(

A. 1 B. 3 C. -1 D. 2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ADBC,B=D

(1)求證:ABCD;

(2)如圖2,點EBA延長線上一點,∠EAD與∠BCD的角平分線交于點P

求∠APC的度數(shù);

②連接DP,若∠PDC=750,則∠DPC-B=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我市某中學(xué)在創(chuàng)建“特色校園”的活動中,將奉校的辦學(xué)理念做成宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示)該中學(xué)數(shù)學(xué)活動小組在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿坡面AB向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)

(1)求點B距水平而AE的高度BH;
(2)求宣傳牌CD的高度.
(結(jié)果精確到0.1米.參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點,若把該正方形紙片卷成一個圓柱,使點A與點D重合,此時,底面圓的直徑為10cm,則圓柱上M,N兩點間的距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠C=72°,∠D=81°.沿EF折疊四邊形,使點A、B分別落在四邊形內(nèi)部的點A′、B′處,則∠1+∠2=°.

查看答案和解析>>

同步練習(xí)冊答案