【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
【答案】D
【解析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.
在△ABC中,∵∠ACB=90°,
∴∠BAC+∠ABC=90°,
又∵AD、BE分別平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,
∴∠APB=135°,故①正確.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,
∴△APH≌△FPD,
∴PH=PD,故③正確.
∵△ABC的角平分線AD、BE相交于點(diǎn)P,
∴點(diǎn)P到AB、AC的距離相等,點(diǎn)P到AB、BC的距離相等,
∴點(diǎn)P到BC、AC的距離相等,
∴點(diǎn)P在∠ACB的平分線上,
∴CP平分∠ACB,故④正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2 h,并且甲車途中休息了0.5 h,如圖是甲、乙兩車行駛的路程y(km)與時(shí)間x(h)的函數(shù)圖象.
(1)求出圖中m和a的值.
(2)求出甲車行駛的路程y(km)與時(shí)間x(h)的函數(shù)關(guān)系式,并寫出相應(yīng)的x的取值范圍.
(3)當(dāng)乙車行駛多長時(shí)間時(shí),兩車恰好相距50 km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,直線y=﹣x+4交坐標(biāo)軸于A、B兩點(diǎn),過點(diǎn)C(﹣4,0)作CD⊥AB于D,交y軸于點(diǎn)E.
(1)求證:△COE≌△BOA;
(2)如圖2,點(diǎn)M是線段CE上一動點(diǎn)(不與點(diǎn)C、E重合),ON⊥OM交AB于點(diǎn)N,連接MN.
①判斷△OMN的形狀.并證明;
②當(dāng)△OCM和△OAN面積相等時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB邊上的兩個(gè)動點(diǎn),滿足∠DCE=45°.
(1)如圖②,把△ADC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△BKC,連結(jié)EK.
①求證:△DCE≌△KCE.
②求證:DE2=AD2+BE2 .
③思考與探究:當(dāng)點(diǎn)D從點(diǎn)A向AB的中點(diǎn)運(yùn)動的過程中,請嘗試寫出DE長度的變化趨勢 ;并直接寫出DE長度的最大值或最小值 (標(biāo)明最大值或最小值).
(2)如圖③,若△CDE的外接圓⊙O分別交AC,BC于點(diǎn)F、G,求證:CF:CG=BE:AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方體骰子(相對面上的點(diǎn)數(shù)分別為1和6、2和5、3和4)放置于水平桌面上,如圖1。在圖2中,將骰子向右翻滾90°,然后在桌面上按逆時(shí)針方向旋轉(zhuǎn)90°,則完成一次變換。若骰子的初始位置為圖1所示的狀態(tài),那么按上述規(guī)則連續(xù)完成14次變換后,骰子朝上一面的點(diǎn)數(shù)是_____________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用同樣大小的兩種不同顏色的正方形紙片,按下圖方式拼正方形.
…
第(1)個(gè)圖形中有1個(gè)正方形;
第(2)個(gè)圖形有1+3=4個(gè)小正方形;
第(3)個(gè)圖形有1+3+5=9個(gè)小正方形;
第(4)個(gè)圖形有25小正方形;
……
(1)根據(jù)上面的發(fā)現(xiàn)我們可以猜想:1+3+5+7+…+(2n-1)的結(jié)果(用含n的代數(shù)式表示);
(2)請根據(jù)你的發(fā)現(xiàn)計(jì)算:① 1+3+5+7+…+99;
② 101+103+105+…+199.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PQ∥MN,點(diǎn)A在PQ上,直角△BEF的直角邊BE在MN上,且∠B=90°,∠BEF=30°.現(xiàn)將△BEF繞點(diǎn)B以每秒1°的速度按逆時(shí)針方向旋轉(zhuǎn)(E,F(xiàn)的對應(yīng)點(diǎn)分別是E′,F(xiàn)′),同時(shí),射線AQ繞點(diǎn)A以每秒4°的速度按順時(shí)針方向旋轉(zhuǎn)(Q的對應(yīng)點(diǎn)是Q′).設(shè)旋轉(zhuǎn)時(shí)間為t秒(0≤t≤45).
(1)∠MBF′=__.(用含t的代數(shù)式表示)
(2)在旋轉(zhuǎn)的過程中,若射線AQ′與邊E′F′平行時(shí),則t的值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com