【題目】已知:如圖,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延長(zhǎng)線交DC于點(diǎn)E.求證:

(1)△BFC≌△DFC;
(2)AD=DE.

【答案】
(1)證明:∵CF平分∠BCD,

∴∠BCF=∠DCF.

在△BFC和△DFC中,

∴△BFC≌△DFC(SAS)


(2)證明:連接BD.

∵△BFC≌△DFC,

∴BF=DF,∴∠FBD=∠FDB.

∵DF∥AB,

∴∠ABD=∠FDB.

∴∠ABD=∠FBD.

∵AD∥BC,

∴∠BDA=∠DBC.

∵BC=DC,

∴∠DBC=∠BDC.

∴∠BDA=∠BDC.

又∵BD是公共邊,

∴△BAD≌△BED(ASA).

∴AD=DE.


【解析】(1)根據(jù)題意和SAS得得得△BFC≌△DFC;(2)由(1)知△BFC≌△DFC,根據(jù)對(duì)應(yīng)邊相等,得到BF=DF,再根據(jù)等腰三角形的性質(zhì)得到∠FBD=∠FDB,由已知DF∥AB,再由ASA得到△BAD≌△BED,根據(jù)全等三角形的對(duì)應(yīng)邊相等,得到AD=DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副含的三角板疊合在一起,邊重合,(如圖1),點(diǎn)為邊的中點(diǎn),邊相交于點(diǎn),現(xiàn)將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(如圖2),在的變化過程中,觀察點(diǎn)的位置變化,點(diǎn)相應(yīng)移動(dòng)的路徑長(zhǎng)為 (結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果n邊形的內(nèi)角和是它外角和的3倍,則n等于()

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ACB=90°,AC=BC,點(diǎn)EAC上一點(diǎn)連接BE

1)如圖1,AB=,BE=5,AE的長(zhǎng);

2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn),過點(diǎn)AAFBD于點(diǎn)F,連接CDCF,當(dāng)AF=DF時(shí),求證:DC=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.3ab-2ab=1
B.x4·x2=x6
C.(x23=x5
D.3x2÷x=2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店將某種商品按進(jìn)貨價(jià)提高100%后,又以6折優(yōu)惠售出,售價(jià)為60元,則這種商品的進(jìn)貨價(jià)是( )
A.120元
B.100元
C.72元
D.50元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A在y軸正半軸上,點(diǎn)B與點(diǎn)C都在x軸上,且點(diǎn)B在點(diǎn)C的左側(cè),滿足BC=OA.若﹣3am﹣1b2與anb2n﹣2是同類項(xiàng)且OA=m,OB=n,求出m和n的值以及點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判定兩個(gè)直角三角形全等的是

A.一個(gè)銳角和斜邊對(duì)應(yīng)相等

B.兩條直角邊對(duì)應(yīng)相等

C.兩個(gè)銳角對(duì)應(yīng)相等

D.斜邊和一條直角邊對(duì)應(yīng)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C0,-1).且對(duì)稱軸為

1)求拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);

2)點(diǎn)Dx軸下方的拋物線上,則四邊形ABDC的面積是否存在最大值,若存在,求出此時(shí)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;

3)點(diǎn)Qy軸上,點(diǎn)P在拋物線上,要使Q、P、AB為頂點(diǎn)的四邊形是平行四邊形,求出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案