【題目】解答題
(1)解不等式組 并把它的解集在數(shù)軸上表示出來.
(2)解方程 =1﹣

【答案】
(1)解: ,

解不等式①,得x≤1,

解不等式②,得x>﹣1,

則不等式組的解集是﹣1<x≤1;


(2)解:方程兩邊同乘x﹣3得:3x=(x﹣3)+1,

解得:x=﹣1,

檢驗:當x=﹣1時,x﹣3≠0,

所以x=﹣1是原方程的解


【解析】(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分確定出不等式組的解集,表示在數(shù)軸上即可;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
【考點精析】根據(jù)題目的已知條件,利用去分母法和不等式的解集在數(shù)軸上的表示的相關知識可以得到問題的答案,需要掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A(1,1),B(4,3),C(6,﹣2),在平面直角坐標找一點D,使以A、B、C、D四點的四邊形為平行四邊形,則D點的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)3(20-y)=6y-4(y-11);

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;

(3)當點C由點M移到點N時,點H移到的路徑長度為(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長都為1的方格紙上有線段AB和點C.

(1)畫線段BC、畫射線AC.

(2)過點C畫直線AB的平行線EF.

(3)過點C畫直線AB的垂線,垂足為點D.

(4)求△ABC的面積是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,∠DAB=60°,連接對角線AC,以AC為邊作第二個菱形,使,連接,再以為邊作第三個菱形,使;…,按此規(guī)律所作的第六個菱形的邊長為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD繞點A逆時針旋轉30°,得到□AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則C=( )

A.155° B.170° C.105° D.145°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結AO并延長交另一分支于點B,以AB為斜邊做等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y= (k<0)上運動,則k的值是

查看答案和解析>>

同步練習冊答案