【題目】班級元旦晚會上,主持人給大家?guī)砹艘粋有獎競猜題,他在一個不透明的袋子中放了若干個形狀大小完全相同的白球,想請大家想辦法估計出袋中白球的個數(shù).數(shù)學課代表小明是這樣來估計的:他先往袋中放入10個形狀大小與白球相同的紅球,混勻后再從袋子中隨機摸出20個球,發(fā)現(xiàn)其中有4個紅球.如果設袋中有白球x個,根據(jù)小明的方法用來估計袋中白球個數(shù)的方程是( 。

A. B. C. D.

【答案】D

【解析】

每一個小球被摸中的可能性都是相同的,因此可用摸中紅球的頻率代表袋子中紅球占總球數(shù)的占比,由此列出等式即可.

∵每一個小球被摸中的可能性都是相同的,

由題可知, 摸中紅球的頻率=,

袋子中紅球占總球數(shù)的

可以求出袋中白球的個數(shù),

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】張叔叔購買了甲,乙兩種蘋果樹苗,分別花了 3500 元和 2500 元.已知甲樹苗單價比乙樹苗單價貴 2 元.

1)若兩種樹苗購買的棵數(shù)一樣多,求乙樹苗的單價;

2)若第二次購買兩種樹苗共 1100 棵,且購買兩種樹苗的總費用不超過 6000 元,根據(jù)(1)中兩種樹苗的單價,求第二次至少購買了多少棵乙樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO直徑,EO上一點,EAB的平分線ACO于點C,過C點作CDAE的延長線于點D,直線CD與射線AB交于點P

(1)判斷直線DPO的位置關系,并說明理由;

(2)若DC=4,⊙O的半徑為5,求PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)(x>0)的圖象上,點C,D在反比例函數(shù)(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為( 。

A. 3 B. 4 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點.

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網(wǎng)格線的交點上)

1)先作△ABC關于原點O成中心對稱的,再把向上平移4個單位長度得到

2△ABC可以經(jīng)過一次旋轉變換得到,旋轉角的大小為多少?寫出旋轉中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

如果兩個正數(shù)ab,即a0,b0,則有下面的不等式: ,當且僅當ab時取等號,我們把叫做正數(shù)ab的算術平均數(shù),把叫做正數(shù)ab的幾何平均數(shù),于是上述的不等式可以表述為:兩個正數(shù)的算術平均數(shù)不小于(即大于或等于)他們的幾何平均數(shù).它在數(shù)學中有廣泛的應用,是解決最大(。┲祮栴}的有力工具.

實例剖析:

已知x0,求式子的最小值.

解:令axb,則由,得當且僅當時,方程兩邊同時乘x,得到,解得x2,式子有最小值,最小值為4

學以致用:

根據(jù)上面的閱讀材料回答下列問題:

1)已知x0,則當x__________時,式子取到最小值,最小值為:_______________

2)用籬笆圍一個面積為100m的長方形花園,問這個長方形的長、寬各為多少時,所用的籬笆最短,最短的籬笆是多少米?

3)已知x0,則x取何值時,式子取到最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AC是菱形ABCD的對角線,且AC=BC

(1)如圖①,點P是△ABC的一個動點,將△ABP繞著點B旋轉得到△CBE

①求證:△PBE是等邊三角形;

②若BC=5,CE=4PC=3,求∠PCE的度數(shù);

(2)連結BDAC于點O,點EOD上且DE=3,AD=4,點G是△ADE內的一個動點如圖②,連結AGEG,DG,求AG+EG+DG的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、B、C的坐標;

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

同步練習冊答案