【題目】如圖所示,AB為⊙O的直徑,CD為弦,且CD⊥AB,垂足為H.
(1)如果⊙O的半徑為4,CD=,求∠BAC的度數(shù);
(2)若點E為弧ADB的中點,連接OE,CE.求證:CE平分∠OCD.
【答案】(1)30°;(2)答案見解析.
【解析】試題分析:(1)先求出CH的長,利用三角形的角邊關(guān)系求出∠COH,然后就可求出∠BAC;
(2)利用等腰三角形的性質(zhì)得出∠E=∠OCE,再利用平行線的判定得出OE∥CD即可證明CE平分∠OCD.
試題解析:(1)∵AB為⊙O的直徑,CD⊥AB,
∴CH=CD=,
在Rt△COH中,OH=,
∴,
∴,
∴∠COH=60°,
∵OA=OC,弧BC=弧BC,
∴∠BAC=∠COH=30°;
(2)∵點E是弧ADB的中點,
∴OE⊥AB,
∴OE∥CD,
∴∠ECD=∠OEC,
又∵∠OEC=∠OCE,
∴∠OCE=∠DCE,
∴CE平分∠OCD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°
(1)觀察猜想
將圖1中的三角尺OCD沿AB的方向平移至圖②的位置,使得點O與點N重合,CD與MN相交于點E,則∠CEN= 度.
(2)操作探究
將圖1中的三角尺OCD繞點O按順時針方向旋轉(zhuǎn),使一邊OD在∠MON的內(nèi)部,如圖3,且OD恰好平分∠MON,CD與NM相交于點E,求∠CEN的度數(shù);
(3)深化拓展
將圖1中的三角尺OCD繞點O按沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若邊CD恰好與邊MN平行,請你求出此時旋轉(zhuǎn)的角度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本
(1)求每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高節(jié)水意識,小明隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)
每天用水折線統(tǒng)計圖 第3天用水情況條形統(tǒng)計圖
(1)填空:這7天內(nèi)小明家里每天用水量的平均數(shù)為 升、中位數(shù)為 升;
(2)求第3天小明家淋浴的水占這一天總用水量的百分比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠ABC=90°,點P在AC上,將△ABP繞頂點B沿順時針方向旋轉(zhuǎn)90°后得到△CBQ.
(1)求∠PCQ的度數(shù);
(2)當AB=4,AP:BP=1:3時,求PQ的長;
(3)當點P在線段AC上運動時(P不與A、C重合),請寫出一個反映PA2、PC2、PB2之間關(guān)系的等式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)將△ABC繞坐標原點O旋轉(zhuǎn)180°,畫出圖形,并寫出點A的對應點A′的坐標_____;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,直接寫出點A的對應點A″的坐標_____;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的所有可能的坐標_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交X軸于點A、B(A左B右),交Y軸于點C,
=6,點P為第一象限內(nèi)拋物線上的一點.
(1)求拋物線的解析式;
(2)若∠PCB=45°,求點P的坐標;
(3)點Q為第四象限內(nèi)拋物線上一點,點Q的橫坐標比點P的橫坐標大1,連接PC、
AQ,當PC=AQ時,求點P的坐標以及ΔPCQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com