【題目】紅星中學(xué)九年級(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費標(biāo)準(zhǔn)為:教師全價,學(xué)生半價;而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。

(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費用各是多少元;

(2)如果=50時,請你計算選擇哪一家旅行社較為合算?

【答案】(1)參加楓江旅行社的總費用為(250a+1500)元,參加?xùn)|方旅行社的總費用為(400a+1200)元;(2)參加楓江旅行社合算.

【解析】試題分析:1)參加楓江旅行社的總費用=3×500+學(xué)生數(shù)×500×0.5;參加?xùn)|方旅行社的總費用=師生總?cè)藬?shù)×500×0.8,把相關(guān)數(shù)值代入化簡即可;(2)把a=50代入(1)得到的2個代數(shù)式中,計算后比較即可.

試題解析:

1)參加楓江旅行社的總費用為:3×500+250a=250a+1500;
參加?xùn)|方旅行社的總費用為:(3+a×500×0.8=400a+1200;
答:參加楓江旅行社的總費用為(250a+1500)元,參加?xùn)|方旅行社的總費用為(400a+1200)元;
2)當(dāng)a=50時,參加楓江旅行社的總費用為250×50+1500=14000(元);
參加?xùn)|方旅行社的總費用為:400×50+1200=21200(元).
參加楓江旅行社合算.
答:參加楓江旅行社合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是 2019 年五月的月歷,“T”型、“田”型兩個陰影圖形分別覆蓋其中四個方格(可以重疊覆蓋),設(shè)“T”型陰影覆蓋的最小數(shù)字為 a,四個數(shù)字之和為 S1,“田”型陰影覆蓋的最小數(shù)字為 b,四個數(shù)字之和為 S2.

(1) S1 的值能否為 50?若能,求 a 的值;若不能,說明理由;

(2)S1+ S2 值能否為 35,若能,求 a,b 的值;若不能,說明理由;

(3) S1+ S2=43,求 S1S2 的值為 (直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張長 9cm,寬 5cm 的長方形硬紙板,如圖在長方形硬紙板的四個角上各截去一個邊長為 0.5cm 的正方形,如圖①所示,然后把它折疊成一個無蓋的長方體小盒,如圖②所示.

請問:

1)折疊成一個無蓋的長方體小盒的地面長.寬分別是多少?

2)這個硬紙板折疊成的小盒容積是多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, OABC 的頂點 OA、C 的坐標(biāo)分別是(00),(20),(0.5,1),則點 B 的坐 標(biāo)是(

A.1,2B.0.5,2C.2.5,1D.2,0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB40°,∠BOC3AOBOD平分∠AOC,求∠COD的度數(shù).

解:∵∠BOC3  ,∠AOB40°,

∴∠BOC  °

∴∠AOC   + 

∴∠AOC160°

OD平分∠AOC

∴∠COD    °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,點DE分別在BC、AC邊上,且AE=CD,ADBE相交于點F,BG⊥AD,垂足為G

1)求證:AD=BE

2)求∠AFB的度數(shù);

3)線段FGBF有什么數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y1=x+2與反比例函數(shù)y2=(x>0)的圖象交于點A(a,5)

(1)確定反比例函數(shù)的表達式;

(2)結(jié)合圖象,直接寫出x為何值時,y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個共一個頂點的等腰Rt△ABCRt△CEF,∠ABC=∠CEF=90°,連接AF,MAF的中點,連接MB、ME

1)如圖1,當(dāng)CBCE在同一直線上時,求證:MB∥CF

2)如圖1,若CB=a,CE=2a,求BM,ME的長;

3)如圖2,當(dāng)∠BCE=45°時,求證:BM=ME

查看答案和解析>>

同步練習(xí)冊答案