【題目】如圖,在矩形ABCD中,,,E是AB上一點(diǎn),連接CE,現(xiàn)將向上方翻折,折痕為CE,使點(diǎn)B落在點(diǎn)P處.
(1)當(dāng)點(diǎn)P落在CD上時(shí),_____;當(dāng)點(diǎn)P在矩形內(nèi)部時(shí),BE的取值范圍是_____.
(2)當(dāng)點(diǎn)E與點(diǎn)A重合時(shí):①畫(huà)出翻折后的圖形(尺規(guī)作圖,保留作圖痕跡);②連接PD,求證:;
(3)如圖,當(dāng)點(diǎn)Р在矩形ABCD的對(duì)角線上時(shí),求BE的長(zhǎng).
【答案】(1)12,0<BE<12;(2)①見(jiàn)解析,②見(jiàn)解析;(3)6或9.
【解析】
(1)由折疊的性質(zhì)得到推出△BCE是等腰直角三角形,即可得到結(jié)論;
(2)①由題意畫(huà)出圖形即可;
②根據(jù)全等三角形的性質(zhì)得到∠PAC=∠DCA,設(shè)AP與CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根據(jù)平行線的判定定理得到結(jié)論;
(3)分兩種情形,當(dāng)點(diǎn)P在對(duì)角線AC或?qū)蔷BD上時(shí),兩種情形分別求解即可.
解:(1)當(dāng)點(diǎn)P在CD上時(shí),如圖1,
∵將∠B向右上方翻折,折痕為CE,使點(diǎn)B落在點(diǎn)P處,
∴∠BCE=∠ECP=45°,
∴△BCE是等腰直角三角形,
∴BE=BC=AD=12,
當(dāng)點(diǎn)P在矩形內(nèi)部時(shí),BE的取值范圍是0<BE<12;
故答案為:12,0<BE<12;
(2)①補(bǔ)全圖形如圖2所示,
②當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),如圖3,連接PD,設(shè)CD交PA于點(diǎn)O.
由折疊得,AB=AP=CD,
在△ADC與△CPA中, ,
∴△ADC≌△CPA,
∴∠PAC=∠DCA,
設(shè)AP與CD相交于O,則OA=OC,
∴OD=OP,∠ODP=∠OPD,
∵∠AOC=∠DOP,
∴∠OAC=∠OPD
∴PD∥AC;
(3)如圖4中,當(dāng)點(diǎn)P落在對(duì)角線AC上時(shí),
由折疊得,BC=PC=12,AC= =20,
∴PA=8,設(shè)BE=PE=x,
在Rt△APE中,(16-x)2=x2+82,
解得x=6.
∴BE=6.
如圖5中,當(dāng)點(diǎn)P落在對(duì)角線BD上時(shí),設(shè)BD交CE于點(diǎn)M.
由折疊得,BE=PE,∠BEC=∠PEC,
∵EM=EM,
∴△MBE∽△MEP,
∴∠EMB=∠EMP,
∵∠EMB+∠EMP=180°,
∴EC⊥BD,
∴∠BCE=∠ABD,
∵∠A=∠ABC=90°,
∴△CBE∽△BAD,
∴ ,
∴ ,
∴BE=9,
綜上所述,滿(mǎn)足條件的BE的值為6或9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BE是△ABC的角平分線,CP是△ABC的外角∠ACD的平分線.延長(zhǎng)BE,BA分別交CP于點(diǎn)F,P.
(1)求證:∠BFC∠BAC;
(2)小智同學(xué)探究后提出等式:∠BAC=∠ABC+∠P.請(qǐng)通過(guò)推理演算判斷“小智發(fā)現(xiàn)”是否正確?
(3)若2∠BEC﹣∠P=180°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解本校八年級(jí)學(xué)生生物考試測(cè)試情況,隨機(jī)抽取了本校八年級(jí)部分學(xué)生的生物測(cè)試成績(jī)?yōu)闃颖,?/span>A(優(yōu)秀)、B(良好)、C(合格)、D(不合格)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖表.請(qǐng)你結(jié)合圖表中所給信息解答下列問(wèn)題:
等級(jí) | 人數(shù) |
A(優(yōu)秀) | 40 |
B(良好) | 80 |
C(合格) | 70 |
D(不合格) |
(1)請(qǐng)將上面表格中缺少的數(shù)據(jù)補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中“A”部分所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)該校八年級(jí)共有1200名學(xué)生參加了身體素質(zhì)測(cè)試,試估計(jì)測(cè)試成績(jī)合格以上(含合格)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)x軸上一點(diǎn)P(a,b),過(guò)點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將下表從左到右在毎個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意三個(gè)相鄰格子中所填整數(shù)之和都相等,則第2017個(gè)格子中的數(shù)字是( )
3 | -1 | 2 | …… |
A.3B.2C.0D.-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在一次環(huán)保知識(shí)宣傳活動(dòng)中,需要印刷若干份調(diào)查問(wèn)卷。印刷廠有甲、乙兩種收費(fèi)方式:甲種方式收制版費(fèi)6元,每一份收印刷費(fèi)0.1元;乙種方式不收制版費(fèi),每印一份收印刷費(fèi)0.12元。設(shè)共印調(diào)查問(wèn)卷份:
(1)按甲種方式應(yīng)收費(fèi)多少元,按乙種方式應(yīng)收費(fèi)多少元(用含的代數(shù)式表示);
(2)若共需印刷500份調(diào)查問(wèn)卷,通過(guò)計(jì)算說(shuō)明選用哪種方式合算?
(3)印刷多少份調(diào)查問(wèn)卷時(shí),甲、乙兩種方式收費(fèi)一樣多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過(guò)點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.
(1)求拋物線的解析式;
(2)在l上是否存在一點(diǎn)P,使PA+PB取得最小值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動(dòng)點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=4cm,BC=3cm若動(dòng)點(diǎn)從點(diǎn)開(kāi)始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)運(yùn)動(dòng)的時(shí)間為x秒.
(1)當(dāng)x=__ __秒 時(shí),CP把△ABC的面積分成相等的兩部分,并求出此時(shí)CP=__ __cm;
(2)當(dāng)x為何值時(shí),△ABP為等腰三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com