【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,∠ABC=45°,點D為BC的中點,CE⊥AD于點E,其延長線交AB于點F,連接DF.求證:∠ADC=∠BDF.
【答案】見解析
【解析】
作BG⊥CB,交CF的延長線于點G,由ASA證明△ACD≌△CBG,得出CD=BG,∠CDA=∠CGB,證出BG=BD,∠FBD=∠GBF=∠CBG,再由SAS證明△BFG≌△BFD,得出∠FGB=∠FDB,即可得出結論.
證明:作BG⊥CB,交CF的延長線于點G,如圖所示:
∵∠CBG=90°,CF⊥AD,
∴∠CAD+∠ADC=∠BCG+∠ADC=90°,
∴∠CAD=∠BCG,
在△ACD和△CBG中,
,
∴△ACD≌△CBG(ASA),
∴CD=BG,∠CDA=∠CGB,
∵CD=BD,
∴BG=BD,
∵∠ABC=45°,
∴∠FBD=∠GBF=∠CBG,
在△BFG和△BFD中,
,
∴△BFG≌△BFD(SAS),
∴∠FGB=∠FDB,
∴∠ADC=∠BDF.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE,動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為__________秒時.△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線OM⊥ON,垂足為O,三角板的直角頂點C落在∠MON的內部,三角板的另兩條直角邊分別與ON、OM交于點D和點B.
(1)填空:∠OBC+∠ODC= ;
(2)如圖,若DE平分∠ODC,BF平分∠CBM,求證:DE⊥BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】振興中學某班的學生對本校學生會倡導的“抗震救災,眾志成城”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數(shù)據.下圖是根據這組數(shù)據繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3∶4∶5∶8∶6,又知此次調查中捐款25元和30元的學生一共42人.
(1)他們一共調查了多少人?
(2)這組數(shù)據的眾數(shù)、中位數(shù)各是多少?
(3)若該校共有1560名學生,估計全校學生捐款多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在①a<0,②b>0,③c<0,④b2﹣4ac>0中錯誤的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學在點P處測得教學樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進60米到達C處,此時測得教學樓A恰好位于正北方向.辦公樓B正好位于正南方向.求教學樓A與辦公樓B之間的距離 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:a*b=10a×10b,例如圖3*4=103×104=107.
(1)試求12*3和2*5的值;
(2)想一想(a*b)*c與a*(b*c)相等嗎?如果相等,請驗證你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3.分別以OA、OC邊所在直線為x軸、y軸建立如圖1所示的平面直角坐標系.
(1)求點B的坐標;
(2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,過點E作EG⊥x軸于G,且EG:OG=2.求直線DE的解析式;
(3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內是否存在另一點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com