【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF= DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
【答案】
(1)證明:∵ABCD為正方形,
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴ ,
∵DF= DC,
∴ ,
∴ ,
∴△ABE∽△DEF
(2)解:∵ABCD為正方形,
∴ED∥BG,
∴ ,
又∵DF= DC,正方形的邊長為4,
∴ED=2,CG=6,
∴BG=BC+CG=10
【解析】(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得 ,根據(jù)有兩邊對應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)平行線分線段成比例定理,可得CG的長,即可求得BG的長.
【考點精析】關(guān)于本題考查的正方形的性質(zhì)和平行線分線段成比例,需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;三條平行線截兩條直線,所得的對應(yīng)線段成比例才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論是 . (寫出正確命題的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF= DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AD⊥BC于點D,E為AB邊上任意一點,EF⊥BC于點F,∠1=∠2.求證:DG∥AB.請把證明的過程填寫完整.
證明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定義)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中 的長是cm(計算結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】看圖填空:
(1)過點________和點_______作直線;
(2)延長線段________到_________,且使________=_________.
(3)過點_________作直線_______的垂線;
(4)作射線_______,使_____平分∠________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com