【題目】濟(jì)南市地鐵1號線于201911日起正式通車,在修建過程中,技術(shù)人員不斷改進(jìn)技術(shù),提高工作效率,如在打通一條長600米的隧道時,計劃用若干小時完成,在實際工作過程中,每小時打通隧道長度是原計劃的1.2倍,結(jié)果提前2小時完成任務(wù).

1)求原計劃每小時打通隧道多少米?

2)如果按照這個速度下去,后面的360米需要多少小時打通?

【答案】1)原計劃每小時打通隧道50米;(2)如果按照這個速度下去,后面的360米需要6小時打通.

【解析】

1)設(shè)原計劃每小時打通隧道x米,則實際每小時打通隧道1.2x米,根據(jù)題意,列出分式方程即可求出結(jié)論;

2)先求出實際每小時打通隧道的長,即可求出結(jié)論.

1)設(shè)原計劃每小時打通隧道x米,則實際每小時打通隧道1.2x米,

依題意,得:2,

解得:x50

經(jīng)檢驗,x50是原分式方程的解,且符合題意.

答:原計劃每小時打通隧道50米.

2)由(1)可知:實際每小時打通隧道50×1.260(米),

360÷606(小時).

答:如果按照這個速度下去,后面的360米需要6小時打通.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王平同學(xué)為小明與小麗設(shè)計了一種游戲游戲規(guī)則是3張數(shù)字分別是2、3、4的撲克牌將牌洗勻后背面朝上放置在桌面上,第一次隨機(jī)抽出一張牌記下數(shù)字后再按原樣放回洗勻后第二次再隨機(jī)抽出一張牌記下數(shù)字,若抽出的兩張牌上的數(shù)字之和為偶數(shù)則小明勝;若兩數(shù)字之和為奇數(shù),則小麗勝問這種游戲規(guī)則公平嗎?請通過畫樹狀圖或列表說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結(jié)構(gòu)性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO 1.2 米,當(dāng)車門打開角度∠AOB40°時,車門是否會碰到墻?請說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy過⊙C上一點P作⊙C的切線l.當(dāng)入射光線照射在點P處時,產(chǎn)生反射且滿足反射光線與切線l的夾角和入射光線與切線l的夾角相等,P稱為反射點.規(guī)定光線不能“穿過”⊙C,即當(dāng)入射光線在⊙C外時,只在圓外進(jìn)行反射;當(dāng)入射光線在⊙C內(nèi)時,只在圓內(nèi)進(jìn)行反射.特別地圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2

1)自⊙C內(nèi)一點出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示P1是第1個反射點.請在圖2中作出光線經(jīng)⊙C第二次反射后的反射光線和反射點P3;

2)當(dāng)⊙O的半徑為1如圖3

①第一象限內(nèi)的一條入射光線平行于y,且自⊙O的外部照射在圓上點P,此光線經(jīng)⊙O反射后,反射光線與x軸平行,則反射光線與切線l的夾角為___________°;

②自點M0,1)出發(fā)的入射光線在⊙O內(nèi)順時針方向不斷地反射.若第1個反射點是P1,第二個反射點是P2,以此類推,8個反射點是P8恰好與點M重合,則第1個反射點P1的坐標(biāo)為___________;

3)如圖4M的坐標(biāo)為(0,2),M的半徑為1.第一象限內(nèi)自點O出發(fā)的入射光線經(jīng)⊙M反射后,反射光線與坐標(biāo)軸無公共點求反射點P的縱坐標(biāo)的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.

其中正確的結(jié)論有( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線ABx軸、y軸相交于兩點,動點C在線段OA上(不與O、A重合),將線段CB繞著點C順時針旋轉(zhuǎn)得到CD,當(dāng)點D恰好落在直線AB上時,過點D軸于點E.

1)求證,;

2)如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過點D時,求點D的坐標(biāo)及平移的距離;

3)若點Py軸上,點Q在直線AB上,是否存在以CD、PQ為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,補(bǔ)充下列結(jié)論和依據(jù).

∵∠ACE∠D(已知),

∴_____∥______(______________________ )

∵∠ACE∠FEC(已知),

∴______∥______(_ ___ _______)

∵∠AEC∠BOC(已知),

∴_____∥______(___ _____________________)

∵∠BFD∠FOC180°(已知),

∴_____∥______(_____ ____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點,,分別是邊,,上的點,且,,相交于點,若點的重心.則以下結(jié)論:①線段,,的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個;④的面積是面積的.其中一定正確的結(jié)論有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,

請寫出各點的坐標(biāo).

若把向上平移2個單位,再向左平移1個單位得到,寫出、的坐標(biāo),并在圖中畫出平移后圖形.

求出三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案