【題目】(1)解方程:2x2﹣7x+6=0;
(2)已知:關(guān)于x的方程x2+kx﹣2=0.
①求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
②若方程的一個(gè)根是﹣1,求另一個(gè)根及k值.
【答案】(1)x1=2,x2= ;(2)①答案見(jiàn)解析;(2)k的值為﹣1,方程另一根為2.
【解析】試題分析:(1)利用求根公式進(jìn)行求解即可得;
(2)①利用根據(jù)的判別式進(jìn)行證明即可;
②先求出k的值,然后再解方程即可得.
試題解析:(1)∵2x2﹣7x+6=0,
∴a=2,b=﹣7,c=6,
∴△=(﹣7)2﹣4×2×6=1,
∴x=,
∴x1=2,x2= ;
(2)①∵x2+kx﹣2=0,
∴△=k2﹣4×(﹣2)=k2+8>0,
∴方程有兩個(gè)不相等的實(shí)數(shù)根;
②∵方程的一個(gè)根是﹣1,
∴1﹣k﹣2=0,解得k=﹣1,
∴方程為x2﹣x﹣2=0,解得x=﹣1或x=2,
即k的值為﹣1,方程另一根為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的《朗讀者》節(jié)目激發(fā)了同學(xué)們的讀書(shū)熱情,為了引導(dǎo)學(xué)生“多讀書(shū),讀好書(shū)”,某校對(duì)八年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本數(shù)量少的有本,最多的有本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如下所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
合計(jì) |
()統(tǒng)計(jì)圖表中的__________,__________,__________.
()請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整.
()求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù).
()若該校八年級(jí)共有名學(xué)生,請(qǐng)你估計(jì)該校八年級(jí)學(xué)生課外閱讀本及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形的一個(gè)角與三角形的一個(gè)角重合,然后它的對(duì)角頂點(diǎn)在這個(gè)重合角的對(duì)邊上,這個(gè)菱形稱為這個(gè)三角形的親密菱形,如圖,在△CFE中,CF=6,CE=12,∠FCE=45°,以點(diǎn)C為圓心,以任意長(zhǎng)為半徑作AD,再分別以點(diǎn)A和點(diǎn)D為圓心,大于AD長(zhǎng)為半徑做弧,交EF于點(diǎn)B,AB∥CD.
(1)求證:四邊形ACDB為△CFE的親密菱形;
(2)求四邊形ACDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s.解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?
(2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?(直接寫(xiě)出答案即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(探究展示)
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(拓展延伸)
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)公益組織計(jì)劃購(gòu)買兩種的文具套裝進(jìn)行捐贈(zèng),關(guān)注留守兒童經(jīng)洽談,購(gòu)買套裝比購(gòu)買套裝多用20元,且購(gòu)買5套套裝和4套套裝共需820元.
(1)求購(gòu)買一套套裝文具、一套套裝各需要多少元?
(2)根據(jù)該公益組織的募捐情況和捐助對(duì)象情況,需購(gòu)買兩種套裝共60套,要求購(gòu)買兩種套裝的總費(fèi)用不超過(guò)5240元,則購(gòu)買套裝最多多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線(k≠0)與有交點(diǎn),則k的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別在AB、AC上,BE與CD相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定△ABE≌△ACD( 。
A. AD=AEB. AB=AC
C. BE=CDD. ∠AEB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球運(yùn)動(dòng)員去年共參加40場(chǎng)比賽,其中3分球的命中率為0.25,平均每場(chǎng)有12次3分球未投中.
(1)該運(yùn)動(dòng)員去年的比賽中共投中多少個(gè)3分球?
(2)在其中的一場(chǎng)比賽中,該運(yùn)動(dòng)員3分球共出手20次,小亮說(shuō),該運(yùn)動(dòng)員這場(chǎng)比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com