【題目】某經銷商經銷的學生用品,他以每件280元的價格購進某種型號的學習機,以每件360元的售價銷售時,每月可售出60個,為了擴大銷售,該經銷商采取降價的方式促銷,在銷售中發(fā)現(xiàn),如果每個學習機降價1元,那么每月就可以多售出5個.

降價前銷售這種學習機每月的利潤是多少元?

經銷商銷售這種學習機每月的利潤要達到7200元,且盡可能讓利于顧客,求每個學習機應降價多少元?

的銷售中,銷量可好,經銷商又開始漲價,漲價后每月銷售這種學習機的利潤能達到10580元嗎?若能,請求出漲多少元;若不能,請說明理由.

【答案】(1)4800元;(2)降價60元;(3)應漲26元每月銷售這種學習機的利潤能達到10580元.

【解析】

根據(jù)總利潤=單個利潤×數(shù)量列出算式,計算即可求出值;

設每個學習機應降價x元,根據(jù)題意列出方程,求出方程的解即可得到結果;

設應漲y元每月銷售這種學習機的利潤能達到10580元,根據(jù)題意列出方程,求出方程的解即可得到結果.

解:由題意得:,

則降價前商場每月銷售學習機的利潤是4800元;

設每個學習機應降價x元,

由題意得:

解得:,

由題意盡可能讓利于顧客,舍去,即,

則每個學習機應降價60元;

設應漲y元每月銷售這種學習機的利潤能達到10580元,

根據(jù)題意得:,

方程整理得:,

解得:

則應漲26元每月銷售這種學習機的利潤能達到10580元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經

過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當BDM為直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE;

2)求證:CE平分∠ACF

3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小文同學統(tǒng)計了某小區(qū)部分居民每周使用共享單車的時間,并繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:

①小文此次一共調查了位小區(qū)居民

②每周使用時間不足分鐘的人數(shù)多于分鐘的人數(shù)

③每周使用時間超過分鐘的人數(shù)超過調查總人數(shù)的一半

④每周使用時間在分鐘的人數(shù)最多

根據(jù)圖中信息,上述說法中正確的是(  )

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC≌△EDC
1)若DEBC(如圖1),判斷△ABC的形狀并說明理由.
2)連結BE,交ACF,點HCE上的點,且CH=CF,連結DHBEK(如圖2).求證:∠DKF=ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是矩形ABCD的對角線,,沿射線BD方向平移到的位置,使BD中點,連接,,,,如圖

求證:四邊形是菱形;

四邊形的周長為______;

將四邊形沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016江蘇省連云港市)環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示:所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標.整改過程中,所排污水中硫化物的濃度ymg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時間x成反比例關系.

1)求整改過程中硫化物的濃度y與時間x的函數(shù)表達式;

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內不超過最高允許的1.0mg/L?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,O為∠BAC,∠ACD平分線的交點,OEACACE,ABCD之間的距離等于4.8,OA=3,OC=4,求線段AC_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當直線MN繞點C旋轉到圖1的位置時

①請說明△ADC≌△CEB的理由;

②請說明DE=AD+BE的理由;

(2)當直線MN繞點C旋轉到圖2的位置時,DE、AD、BE具有怎樣的等量關系?請直接在橫線上寫出這個等量關系:__________;

(3)當直線MN繞點C旋轉到圖3的位置時,DE、AD、BE具有怎樣的等量關系?請直接在橫線上寫出這個等量關系:__________

查看答案和解析>>

同步練習冊答案