【題目】隨著紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也逐步增大.某商場從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7 500元購進A型空氣凈化器和用6 000元購進B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?
(2)經(jīng)市場調(diào)查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,如果每天商場銷售B型空氣凈化器的利潤為3200元,請問該商場應將B型空氣凈化器的售價定為多少元?
(3)已知A型空氣凈化器凈化能力為340m3/h,B型空氣凈化器凈化能力為240m3/h.某公司室內(nèi)辦公場地總面積為600m2 , 室內(nèi)墻高3.5m.受二胎政策影響,近期孕婦數(shù)量激增,為保證胎兒健康成長,該公司計劃購買15臺空氣凈化器凈化空氣,每天花費30分鐘將室內(nèi)空氣凈化一新,若不考慮空氣對流等因素,該公司至少要購買A型空氣凈化器多少臺?
【答案】
(1)解:設(shè)一臺B型空氣凈化器的進價為x元,則一臺A型空氣凈化器的進價為(x+300)元,
根據(jù)題意得 = ,
解得x=1200,
經(jīng)檢驗x=1200是原方程的解,
當x=1200時,x+300=1500,
所以一臺A型空氣凈化器和一臺B型空氣凈化器的進價分別為1500元、1200元;
(2)解:設(shè)該商場應將B型空氣凈化器的售價定為a元,
根據(jù)題意得(a﹣1200)(4+ )=3200,
整理得a2﹣3200a+2560000=0,解得a1=a2=160,
所以該商場應將B型空氣凈化器的售價定為1600元;
(3)解:該公司要購買A型空氣凈化器m臺,
根據(jù)題意得 [340m+240(15﹣m)]≥600×3.5
解得m≥6,
所以該公司至少要購買A型空氣凈化器6臺.
【解析】(1)設(shè)一臺B型空氣凈化器的進價為x元,則一臺A型空氣凈化器的進價為(x+300)元,利用用7 500元購進A型空氣凈化器和用6 000元購進B型空氣凈化器的臺數(shù)相同可列方程 = ,然后解方程檢驗確定x的值,再計算x+300即可;(2)設(shè)該商場應將B型空氣凈化器的售價定為a元,則銷售量為(4+ )臺,然后利用單個利潤乘以總利潤列方程(a﹣1200)(4+ )=3200,再解一元二次方程即可;(3)該公司要購買A型空氣凈化器m臺,利用凈化的體積不少于辦公室的體積列不等式 [340m+240(15﹣m)]≥600×3.5,然后解方程得到m的范圍,在此范圍內(nèi)確定m的最小值即可.
【考點精析】解答此題的關(guān)鍵在于理解分式方程的應用的相關(guān)知識,掌握列分式方程解應用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,CE平分∠ACD交AB于E點.
(1)求證:△ACE是等腰三角形;
(2)若AC=13cm,CE=24cm,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市文化宮學習十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學捐贈書包活動.首次用2000元在商店購進一批學生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進書包的單價是多少?
(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,AB∥CD,分別探究下列四個圖形(圖①、②、③、④)中∠APC和∠PAB、∠PCD的數(shù)量關(guān)系,用等式表示出來.
(1)設(shè)∠APC=m,∠PAB=n,∠PCD=t.
請用含m,n,t的等式表示四個圖形中相應的∠APC和∠PAB、∠PCD的數(shù)量關(guān)系.(直接寫出結(jié)果)
圖①: ;
圖②: ;
圖③: ;
圖④: .
(2)在(1)中的4個結(jié)論中選出一個你喜歡的結(jié)論加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標:_____;點B的坐標:_____;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當t為何值時,△NOM≌△AOB,求出此時點M的坐標;
(4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標是【 】
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com