【題目】若兩個二次函數(shù)圖象的頂點、開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”

1)請直接寫出兩個為“同簇二次函數(shù)”的函數(shù):①______,②_________

2)已知關(guān)于的二次函數(shù),若為“同簇二次函數(shù)”,求函數(shù)的表達式,并求出當時,的最小值.

【答案】1)①,②;(2,最小值為0

【解析】

1)寫出頂點在原點,開口方向向上的兩個二次函數(shù)解析式即可;

2)由,可得,再求出的頂點坐標,根據(jù)新定義得到二次函數(shù)的頂點坐標為,利用二次函數(shù)圖象上點的坐標特征和對稱軸方程解得,,則函數(shù)的表達式為,然后根據(jù)二次函數(shù)的性質(zhì)求當時,的最小值.

解:(1)“兩個為“同簇二次函數(shù)”的函數(shù).①,②

故答案為,

2

二次函數(shù)的頂點為

為“同簇二次函數(shù)”,

的頂點坐標為

,

解之,得:

,

時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于,兩點,且經(jīng)過點

1)求的值;

2)若,

①求的值;

②點軸上一動點,點為坐標平面內(nèi)另一點,若以,,為頂點的四邊形是菱形,請直接寫出所有符合條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F(xiàn),H為CG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若 = ,則SEDH=13SCFH

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形△ABC的腰長AB=AC=25,BC=40,動點P從B出發(fā)沿BC向C運動,速度為10單位/秒.動點Q從C出發(fā)沿CA向A運動,速度為5單位/秒,當一個點到達終點的時候兩個點同時停止運動,點P′是點P關(guān)于直線AC的對稱點,連接P′P和P′Q,設(shè)運動時間為t秒.

(1)若當t的值為m時,PP′恰好經(jīng)過點A,求m的值.
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4)
(3)是否存在某一時刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著父親節(jié)的臨近,某商場決定開展“感恩父愛,回饋顧客”的促銷活動,對部分節(jié)日大禮包進行打折銷售.其中款節(jié)日大禮包打款節(jié)日大禮包打折.已知打折前,購買款節(jié)日大禮包和款節(jié)日大禮包需要元;打折后買款節(jié)日大禮包和款節(jié)日大禮包需要元.

求打折后兩款節(jié)日大禮包每盒分別為多少元?

打折期間,某公司計劃為員工采購盒節(jié)日大禮包,總費用不超過元,則最多可以購買款節(jié)日大禮包多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點

1)求點AB坐標和∠BAO度數(shù)

2)點C、D分別是線段OA、AB上一動點(不與端點重合),且CD=DA,設(shè)線段OC的長度為x ,,請求出y關(guān)于x的函數(shù)關(guān)系式以及定義域

3)點CD分別是射線OA、射線BA上一動點,且CD=DA,當ΔODB為等腰三角形時,求C的坐標(第(3)小題直接寫出分類情況和答案,不用過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 把解集表示在數(shù)軸上,并求出不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開通了互聯(lián)網(wǎng)家校合育教育平臺,為了解家長使用平臺的情況,學(xué)校將家長的使用情況分為經(jīng)常使用、“偶爾使用”和“不使用”三種類型,借助該平臺大數(shù)據(jù)功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息解答下列問題

(1)此次調(diào)查的家長總?cè)藬?shù)為   ;

(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數(shù)是   °,并補全條形統(tǒng)計圖;

(3)若該校八年級學(xué)生家長共有1200人,根據(jù)此次調(diào)查結(jié)果估計該校八年級中“經(jīng)常使用”類型的家長約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.

(1)求證:點D是AB的中點;
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案