【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是(  )

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時,△ABD是等腰直角三角形

【答案】D
【解析】解:∵拋物線與x軸的交點A、B的橫坐標(biāo)分別為﹣1,3,∴拋物線的對稱軸為直線x=1,則﹣ =1,
∴2a+b=0,
∴選項A錯誤;
∴當(dāng)自變量取1時,對應(yīng)的函數(shù)圖象在x軸下方,
∴x=1時,y<0,則a+b+c<0,
∴選項B錯誤;
∵A點坐標(biāo)為(﹣1,0),
∴a﹣b+c=0,而b=﹣2a,
∴a+2a+c=0,
∴3a+c=0,
∴選項C錯誤;
當(dāng)a= ,則b=﹣1,c=﹣ ,對稱軸x=1與x軸的交點為E,如圖,∴拋物線的解析式為y= x2﹣x﹣ ,把x=1代入得y= ﹣1﹣ =﹣2,
∴D點坐標(biāo)為(1,﹣2),
∴AE=2,BE=2,DE=2,
∴△ADE和△BDE都為等腰直角三角形,
∴△ADB為等腰直角三角形,
∴選項D正確.
故選D.

【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1是一塊半徑為1的半圓形紙板,在P1的右上端剪去一個直徑為1的半圓后得到圖形P2,然后依次剪去一個更小的半圓(其直徑為前一個被剪去的半圓的半徑)得到圖形P3、P4…Pn…,記紙板Pn的面積為Sn,則S2018-S2019的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=CB,BE=BF,點A,B,C在同一條直線上,∠1=∠2.

(1)證明:△ABE≌△CBF;

(2)若∠FBE=40°,∠C=45°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O是直線l上一點,在點O的正上方有一點A,滿足OA=3,點A,B位于直線l的同側(cè),且點B到直線l的距離為5,線段AB=,一動點C在直線l上移動.

(1)當(dāng)點C位于點O左側(cè)時,且OC=4,直線l上是否存在一點P,使得△ACP為等腰三角形?若存在,請求出OP的長;若不存在,請說明理由.

(2)連結(jié)BC,在點C移動的過程中,是否存在一點C,使得AC+BC的值最。咳舸嬖,請求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分類討論是一種重要的數(shù)學(xué)方法,如在化簡|a|時,可以這樣分類:當(dāng)a>0時,|a|=a;當(dāng)a=0時,|a|=0;當(dāng)a<0時,|a|=﹣a.用這種方法解決下列問題:

(1)當(dāng)a=5時,求的值.

(2)當(dāng)a=﹣2時,求的值.

(3)若有理數(shù)a不等于零,求的值.

(4)若有理數(shù)a、b均不等于零,試求+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運(yùn)動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時,點Q與點D重合?
(2)當(dāng)⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)2(x﹣1)+1=0

(2)4(2x﹣1)﹣3(5x+1)=14

(3)x﹣=1﹣

(4)

查看答案和解析>>

同步練習(xí)冊答案