【題目】如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn).
(1)若∠A=40°,求∠DEF的度數(shù);
(2)AB=AC=13,BC=10,求⊙O的半徑.
【答案】(1)70°(2)
【解析】
(1)連OD,OF;先利用三角形的內(nèi)角和求出∠DOF,再根據(jù)圓周角定理求出角DEF.
(2)過(guò)A做AM⊥BC于M,求出BM=BC,則S△ABC=60 ,設(shè)圓O的半徑的半徑是r,則
(13+13+10)r=60,求出r即可.
(1)連OD,OF,如圖,
則OD⊥AB,OF⊥AC;
∴∠DOF=180°-∠A=180°-40°=140°,
又∵∠DEF=∠DOF=×140°=70°,
(2)過(guò)A做AM⊥BC于M,
∵AB=AC
∴BM=BC=×10=5,
則AM=12
則S△ABC=60 .
設(shè)圓O的半徑的半徑是r,則
(13+13+10)r=60,
解得:r=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,點(diǎn)E在邊AD上,連接BE將△ABE沿BE翻折,得到△MBE,M點(diǎn)剛好在CD邊上,若AD長(zhǎng)為2,AB長(zhǎng)為,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=15,AC=20,BC邊上的高AD=12,則BC的長(zhǎng)為( )
A.25B.7C.25或7D.14或4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形中,,,為上一個(gè)動(dòng)點(diǎn),,連接并延長(zhǎng)交延長(zhǎng)線于點(diǎn).
(1)如圖1,求證:;
(2)當(dāng)為直角三角形時(shí),求的長(zhǎng);
(3)當(dāng)為的中點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線,點(diǎn),分別是直線,上任意兩點(diǎn),在直線上取一點(diǎn),使,連接,在直線上任取一點(diǎn),作,交直線于點(diǎn).
(1)如圖1,若點(diǎn)是線段上任意一點(diǎn),交于,求證:;
(2)如圖2,點(diǎn)在線段的延長(zhǎng)線上時(shí),與互為補(bǔ)角,若,請(qǐng)判斷線段與的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在.
(1)用尺規(guī)作圖方法,按要求作圖:
①作的高;
②作的平分線,分別交于點(diǎn);
(要求:保留作圖痕跡,不寫作法和證明)
(2)求證:點(diǎn)在的垂直平分線.上; .
(3)在(1)所作的圖中,探究線段AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)學(xué)活動(dòng)課上,小麗為了測(cè)量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測(cè)得旗桿底端B的俯角為45°,測(cè)得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請(qǐng)你幫她求出旗桿的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤(rùn)為W萬(wàn)元.(毛利潤(rùn)=銷售額﹣生產(chǎn)費(fèi)用)
(1)請(qǐng)直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍)
(2)求W與x之間的函數(shù)關(guān)系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄭州市農(nóng)業(yè)路高架橋二層的開通,較大程度緩解了市內(nèi)交通的壓力,最初設(shè)計(jì)南陽(yáng)路口上橋匝道時(shí),其坡角為15°,后來(lái)從安全角度考慮將匝道坡角改為5°(見示意圖),如果高架橋高CD=6米,匝道BD和AD每米造價(jià)均為4 000元,那么設(shè)計(jì)優(yōu)化后修建匝道AD的投資將增加多少元?(參考數(shù)據(jù):sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,結(jié)果保留整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com