【題目】邊長為的矩形發(fā)生形變后成為邊長為,的平行四邊形,如圖1,平行四邊形中,,邊上的高為,我們把的比值叫做這個平行四邊形的形變比

1)若形變后是菱形(如圖2),則形變前是什么圖形?

2)若圖2中菱形的“形變比”為,求菱形形變前后的面積之比;

3)當(dāng)邊長為3,4的矩形變后成為一個內(nèi)角是30°的平行四邊形時,求這個平行四邊形的“形變比”.

【答案】1)正方形;(2;(3

【解析】

(1)根據(jù)形變后的圖形為菱形,即可推斷.

2)由題意得形變比,再分別用代數(shù)式表示形變前和形變后的面積,計算比值即可.

3)分以AB為底邊和以AD為底邊兩種情況討論,可求這個平行四邊形的“形變比”.

1)∵形變后是菱形

AB=BC=CD=DA

則形變前的四條邊也相等

∵四條邊相等的矩形是正方形

∴形變前的圖形是正方形

2)根據(jù)題意知道:

S形變前=a×b=a2

S形變后=a×h=a××a=a2

3)當(dāng)形變后四邊形一個內(nèi)角為30°時

此時應(yīng)分兩種情況討論:

第一種:以AB為底邊4×=2

∴這個四邊形的形變比為:

第二種:以AD為底邊

∴這個四邊形的形變比為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(點A在點B的左側(cè)),點A的坐標(biāo)為(﹣1,0),與y軸交于點C(0,3),作直線BC.動點Px軸上運動,過點PPMx軸,交拋物線于點M,交直線BC于點N,設(shè)點P的橫坐標(biāo)為m.

(1)求拋物線的解析式和直線BC的解析式;

(2)當(dāng)點P在線段OB上運動時,若CMN是以MN為腰的等腰直角三角形時,求m的值;

(3)當(dāng)以C、O、M、N為頂點的四邊形是以OC為一邊的平行四邊形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,ABC是直角三角形,ACB=90°,點B、C都在第一象限內(nèi),CAx軸,垂足為點A,反比例函數(shù)y1=的圖象經(jīng)過點B;反比例函數(shù)y2=的圖象經(jīng)過點C(,m).

(1)求點B的坐標(biāo);

(2)ABC的內(nèi)切圓M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

①(x+1)2=4x

x2+3x﹣4=0(用配方法)

x2﹣2x﹣8=0

④2(x+4)2=5(x+4)

⑤2x2﹣7x=4

⑥(x+1)(x+2)=2x+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC折疊,使點B翻折到點E處,若,則的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A廠一月份產(chǎn)值為16萬元,因管理不善,二、三月份產(chǎn)值的月平均下降率為x(0<x<1).B廠一月份產(chǎn)值為12萬元,二月份產(chǎn)值下降率為x,經(jīng)過技術(shù)革新,三月份產(chǎn)值增長,增長率為2x.三月份A、B兩廠產(chǎn)值分別為yAyB(單位:萬元).

(1)分別寫出yA、yBx的函數(shù)表達(dá)式;

(2)當(dāng)yAyB時,求x的值;

(3)當(dāng)x為何值時,三月份A、B兩廠產(chǎn)值的差距最大?最大值是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點P,AP=2,BP=6,APC=30°,則CD的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2+2=0.

(1)若方程總有兩個實數(shù)根,求m的取值范圍;

(2)若方程有一個實數(shù)根為1,求m的值和另一個根.

查看答案和解析>>

同步練習(xí)冊答案