【題目】如圖,直線l與反比例函數y=(k≠0)的圖象在第二象限交于B、C兩點,與x軸交于點A,連接OC,∠ACO的角平分線交x軸于點D.若AB:BC:CO=1:2:2,△COD的面積為6,則k的值為______.
科目:初中數學 來源: 題型:
【題目】綜合與實踐:折紙中的數學
問題情境:
在矩形中,=12,點、分別是、的中點,點、分別在、上,且=,將△沿折疊,點的對應點為點,將△沿折疊,點的對應點為點Q,且點、均落在矩形的內部(如圖①).
數學思考:
(1)判斷與是否平行,并說明理由;
(2)當長度是多少時,存在點,使四邊形是有一個內角為60°的菱形(如圖②)?直接寫出的長度及菱形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】社區(qū)利用一塊矩形空地建了一個小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設計為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.
(1)求通道的寬是多少米?
(2)該停車場共有車位64個,據調查分析,當每個車位的月租金為200元時,可全部租出;當每個車位的月租金每上漲10元,就會少租出1個車位.當每個車位的月租金上漲多少元時,停車場的月租金收入為14400元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與y軸交于C點,交x軸于點A(-2,0),B(6,0),P是該函數在第一象限內圖象上的動點,過點P作PQ⊥BC于點Q,連接PC,AC.
(1)求該二次函數的表達式;
(2)求線段PQ的最大值;
(3)是否存在點P,使得以點P,C,Q為頂點的三角形與△ACO相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點到直線的距離即為點到直線的垂線段的長.
(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點P是反比例函數y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=?若存在,求出點P的坐標,若不存在,請說明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年春節(jié)聯(lián)歡晚會傳承創(chuàng)新亮點多,收視率較往年大幅增長.成都高新區(qū)某學校對部分學生就2020年春晚的關注程度,采用隨機抽樣調査的方式,并根據收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖(其中A表示“非常關注”;B表示“關注”;C表示“關注很少”;D表示“不關注”).
請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)直接寫出m=______;估計該校1800名學生中“不關注”的人數是______人;
(2)在一次交流活動中,老師決定從本次調查回答“關注”的同學中隨機選取2名同學來談談他們的想法,而本次調查回答“關注”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,點E,F分別在邊BC,AD上,BE=DF,∠AEC=90°.
(1)求證:四邊形AECF是矩形;
(2)連接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結論:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0;⑤(a+c)2<b2.其中,正確結論的個數是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A,B,C的坐標分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點M的坐標為___________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com