【題目】已知關(guān)于x的方程
(1)當(dāng)m___________時(shí),已知方程為一元一次方程;
(2)當(dāng)m___________時(shí),已知方程為一元二次方程;
(3)若已知方程有實(shí)數(shù)根,求m的取值范圍。
【答案】(1)=1;(2)≠1 ;(3)m≤3且m≠1.
【解析】
(1)根據(jù)二次項(xiàng)的系數(shù)為零且一次項(xiàng)的系數(shù)不為零是一元一次方程,可得答案;
(2)根據(jù)二次項(xiàng)的系數(shù)不為零且一次項(xiàng)的系數(shù)不為零是一元二次方程,可得答案;
(3)根據(jù)根的判別式,可得答案.
(1)∵為一元一次方程,
∴m-1=0,
解得m=1;
(2)∵為一元二次方程,
∴m-1≠0,
解得m≠1;
(3)∵為一元二次方程,且有實(shí)數(shù)根,
∴△=(-4)2-4×(m-1)×2≥0,
16-8m+8≥0,
8m≤24,
m≤3且m≠1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,于點(diǎn).
(1)如圖1所示,點(diǎn)分別在線段上,且,當(dāng)時(shí),求線段的長;
(2)如圖2,點(diǎn)在線段的延長線上,點(diǎn)在線段上,(1)中其他條件不變.
①線段的長為 ;
②求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,點(diǎn)A(0,1),點(diǎn)C、D在反比例函數(shù)(k>0)的圖象上,AB與x軸的正半軸相交于點(diǎn)E,若E為AB的中點(diǎn),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B(3,3)在雙曲線y=(x>0)上,點(diǎn)D在雙曲線(x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,DM⊥x軸于M,BN⊥x軸于N,且點(diǎn)A、 B、 C、D構(gòu)成的四邊形為正方形.
(1)k的值為___;
(2)求證:△ADM≌△BAN;
(3)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+m過點(diǎn)A(5,—2)且分別與x軸、y軸交于點(diǎn)B、C,過點(diǎn)A畫AD//x軸,交y軸于點(diǎn)D.
(1)求點(diǎn)B、C的坐標(biāo);
(2)在線段AD上存在點(diǎn)P,使BP+ CP最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.
求實(shí)數(shù)的取值范圍;
是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根之和等于兩實(shí)數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com