【題目】如圖①,定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫作互補(bǔ)等對(duì)邊四邊形.如圖②,在等腰△ABE中,AE=BE,四邊形ABCD是互補(bǔ)等對(duì)邊四邊形.試說(shuō)明:∠ABD=∠BAC=∠E.
【答案】證明見(jiàn)解析.
【解析】
已知AE=BE,根據(jù)等腰三角形的性質(zhì)可得∠EAB=∠EBA.根據(jù)互補(bǔ)等對(duì)邊四邊形的定義可得AD=BC.利用SAS證明△ABD≌△BAC,根據(jù)全等三角形的性質(zhì)可得∠ABD=∠BAC,∠ADB=∠BCA;根據(jù)互補(bǔ)等對(duì)邊四邊形的定義可得∠ADB+∠BCA=180°,即可求得∠ADB=∠BCA=90°.在等腰△ABE中,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可得∠EAB=∠EBA= (180°-∠E)=90°-∠E,所以∠ABD=90°-∠EAB=90°-=∠E,由此即可證得結(jié)論.
∵AE=BE,
∴∠EAB=∠EBA.
∵四邊形ABCD是互補(bǔ)等對(duì)邊四邊形,
∴AD=BC.
在△ABD與△BAC中,,
∴△ABD≌△BAC,
∴∠ABD=∠BAC,∠ADB=∠BCA.
∵∠ADB+∠BCA=180°,
∴∠ADB=∠BCA=90°.
在等腰△ABE中,∵∠EAB=∠EBA= (180°-∠E)=90°-∠E,
∴∠ABD=90°-∠EAB=90°-=∠E,
∴∠ABD=∠BAC=∠E.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD平分∠ACB交AB于點(diǎn)D,E為AC上一點(diǎn),且DE∥BC
(1)求證:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫(xiě)出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】6月14日是“世界獻(xiàn)血日”,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對(duì)獻(xiàn)血者的血型進(jìn)行檢測(cè),檢測(cè)結(jié)果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為 人,m= ;
(2)補(bǔ)全上表中的數(shù)據(jù);
(3)若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請(qǐng)你根據(jù)抽樣結(jié)果回答:
從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,E是BC邊的中點(diǎn),點(diǎn)P在射線AD上,過(guò)P作PF⊥AE于F.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在射線AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使以P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一個(gè)智能機(jī)器人接到如下指令:從原點(diǎn)O出發(fā),按向右,向上,向右,向下的方向依次不斷移動(dòng),每次移動(dòng)1m.其行走路線如圖所示,第1次移動(dòng)到A1,第2次移動(dòng)到A2,…,第n次移動(dòng)到An.則△OA2A2018的面積是( 。
A. 504m2 B. m2 C. m2 D. 1009m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D.過(guò)點(diǎn)C作CF∥AB,在CF上取一點(diǎn)E,使DE=CD,連接AE.對(duì)于下列結(jié)論:①AD=DC;②△CBA∽△CDE;③=;④AE為⊙O的切線,一定正確的結(jié)論全部包含其中的選項(xiàng)是( )
A. ①② B. ①②③ C. ①④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com