【題目】如圖,把一副三角板如圖①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖②).
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長.
【答案】(1)120°;(2)5.
【解析】
(1)利用已知得出∠BCO=45°,進(jìn)而根據(jù)三角形內(nèi)角和定理求出∠BOC的度數(shù);
(2)根據(jù)OFE1=∠B+∠1,易得∠OFE1的度數(shù),進(jìn)而得出∠4=90°,在Rt△AD1O中根據(jù)勾股定理就可以求得AD1的長.
(1)如圖乙所示,
∠BCO=60°-15°=45°,
∠BOC=180°-45°-45°=90°;
(2)如圖乙所示,
∵∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;
∴∠D1FO=60°,
∵∠CD1E1=30°,
∴∠4=90°,
又∵AC=BC,∠A=45°
即△ABC是等腰直角三角形.
∴OA=OB=AB=3cm,
∵∠ACB=90°,
∴CO=AB=×6=3(cm),
又∵CD1=7(cm),
∴OD1=CD1-OC=7-3=4(cm),
在Rt△AD1O中,AD1=(cm)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,點(diǎn)B的坐標(biāo)分別為(0,2),(-1,0),將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),若點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(2,0),
(1)則點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)為_____;
(2)畫出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的是_________(只填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.現(xiàn)在將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至△A′B′C′,使得點(diǎn)A′恰好落在AB上,連接BB′,則BB′的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m﹣2)xm2+m-4 +2x﹣1是一個(gè)二次函數(shù),求該二次函數(shù)的解析式.
【答案】y=﹣5x2+2x﹣1
【解析】試題分析:根據(jù)二次函數(shù)的定義得到m2+m﹣4=2且m﹣2≠0,由此求得m的值,進(jìn)而得到該二次函數(shù)的解析式.
試題解析:依題意得:m2+m﹣4=2且m﹣2≠0. 即(m﹣2)(m+3)=0且m﹣2≠0,
解得m=﹣3,
則該二次函數(shù)的解析式為y=﹣5x2+2x﹣1
【題型】解答題
【結(jié)束】
21
【題目】如圖,在ABCD中,EF∥AB,F(xiàn)G∥ED,DE:DA=2:5,EF=4,求線段CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在課堂上,老師將除顏色外都相同的1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓全班同學(xué)依次進(jìn)行摸球試驗(yàn),每次隨機(jī)摸出一個(gè)球,記下顏色再放回?cái)噭颍卤硎窃囼?yàn)得到的一組數(shù)據(jù).
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 |
摸到黑球的次數(shù)m | 26 | 37 | 49 | 124 | 200 |
摸到黑球的頻率 | a |
表中a的值等于______;
估算口袋中白球的個(gè)數(shù);
用畫樹狀圖或列表的方法計(jì)算連續(xù)兩名同學(xué)都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))的對稱軸為x=1,與y軸的交點(diǎn)為c(0,4),y的最大值為5,頂點(diǎn)為M,過點(diǎn)D(0,1)且平行于x軸的直線與拋物線交于點(diǎn)A,B.
(Ⅰ)求該二次函數(shù)的解析式和點(diǎn)A、B的坐標(biāo);
(Ⅱ)點(diǎn)P是直線AC上的動點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,求出所有點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com