【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),給出如下定義:若存在點(diǎn)(為正數(shù)),稱點(diǎn)為點(diǎn)的等距點(diǎn).例如:如圖,對(duì)于點(diǎn),存在點(diǎn),點(diǎn),則點(diǎn)分別為點(diǎn)的等距點(diǎn).
(1)若點(diǎn)的坐標(biāo)是,寫(xiě)出當(dāng)時(shí),點(diǎn)在第一象限的等距點(diǎn)坐標(biāo);
(2)若點(diǎn)的等距點(diǎn)的坐標(biāo)是,求當(dāng)點(diǎn)的橫、縱坐標(biāo)相同時(shí)的坐標(biāo);
(3)是否存在適當(dāng)?shù)?/span>值,當(dāng)將某個(gè)點(diǎn)的所有等距點(diǎn)用線段依次連接起來(lái)所得到的圖形周長(zhǎng)不大于,求的取值范圍.
【答案】(1)的等距點(diǎn)為;(2)點(diǎn)點(diǎn)坐標(biāo)為;(3).
【解析】
(1)根據(jù)等距點(diǎn)的定義可作判斷;
(2)設(shè)點(diǎn)的坐標(biāo)為,根據(jù)等距點(diǎn)的定義分兩種情況列方程即可解答;
(3)根據(jù)題意畫(huà)出圖形可知.所有等距點(diǎn)用線段依次連接起來(lái)所得到的圖形是矩形,其邊長(zhǎng)為2a,周長(zhǎng)為8a,依據(jù)題意可得不等式求出a的取值范圍.
解:(1)∵點(diǎn)的坐標(biāo)是,當(dāng)時(shí),
∴點(diǎn)的等距點(diǎn)有(4,5);(-4,-3),(4,-3),(-4,5)
∴點(diǎn)在第一象限的等距點(diǎn)坐標(biāo)為;
(2)設(shè)點(diǎn)的坐標(biāo)為,
由題意得,,
∴或
∴解得,
∴點(diǎn)點(diǎn)坐標(biāo)為;
(3)由題意得,∴,
∴
∴的取值范圍:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,∠B=90°,AC=AD.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B-A-D-C方向以1單位/秒的速度運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過(guò)程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖2所示,則AD等于( )
A. 10B. C. 8D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l//AB,l與AB之間的距離為2.C、D是直線l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)C在D點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說(shuō)法:①四邊形ABDC的面積始終為10;②當(dāng)A′與D重合時(shí),四邊形ABDC是菱形;③當(dāng)A′與D不重合時(shí),連接A′、D,則∠CA′D+∠BC A′=180°;④若以A′、C、B、D為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分6分)一只不透明的袋子中裝有1個(gè)白球、1個(gè)藍(lán)球和2個(gè)紅球,這些球除顏色外都相同.
(1)從袋中隨機(jī)摸出1個(gè)球,摸出紅球的概率為 ;
(2)從袋中隨機(jī)摸出1個(gè)球(不放回)后,再?gòu)拇杏嘞碌?個(gè)球中隨機(jī)摸出1個(gè)球,球兩次摸到的球顏色不相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,過(guò)點(diǎn)A作AD⊥AB交⊙O于點(diǎn)D,交BC于點(diǎn)E,點(diǎn)F在DA的延長(zhǎng)線上,且∠ABF=∠C .
(1)求證:BF是⊙O的切線;
(2)若AD=4,cos∠ABF=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線,直線與直線、分別相交于、兩點(diǎn),直線與直線、分別相交于、兩點(diǎn),點(diǎn)在直線上運(yùn)動(dòng)(不與、兩點(diǎn)重合).
(1)如圖1,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),總有:,請(qǐng)說(shuō)明理由:
(2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),、、之間有怎樣的數(shù)量關(guān)系,并說(shuō)明理由:
(3)如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上運(yùn)動(dòng)時(shí),、、之間又有怎樣的數(shù)量關(guān)系(只需直接給出結(jié)論)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB交CD于點(diǎn)O,OE平分∠BOC,OF平分∠BOD,∠AOC=3∠COE,則∠AOF等于___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,△ABC的頂點(diǎn)均在格點(diǎn)上. 請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫(huà)圖和解答下列問(wèn)題:
(1)將△ABC沿x軸翻折后再沿x軸向右平移1個(gè)單位,在圖中畫(huà)出平移后的△A1B1C1,若△ABC內(nèi)有一點(diǎn)P(m,n),則經(jīng)過(guò)上述變換后點(diǎn)P的坐標(biāo)為___ __.
(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A2B2C2
(3) 若將△ABC繞某點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,其對(duì)應(yīng)點(diǎn)分別為A3(2,1),B3(4,0),C3(3,-2),則旋轉(zhuǎn)中心坐標(biāo)為___ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以A點(diǎn)為圓心,以相同的長(zhǎng)為半徑作弧,分別與射線AM,AN交于B,C兩點(diǎn),連接BC,再分別以B,C為圓心,以相同長(zhǎng)(大于BC)為半徑作弧,兩弧相交于點(diǎn)D,連接AD,BD,CD.則下列結(jié)論錯(cuò)誤的是( )
A. AD平分∠MAN B. AD垂直平分BC
C. ∠MBD=∠NCD D. 四邊形ACDB一定是菱形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com