【題目】如圖,在平面直角坐標系中,P是拋物線y=-x2+3x上一點,且在x軸上方,過點P分別向x軸、y軸作垂線,得到矩形PMON.若矩形PMON的周長隨點P的橫坐標m增大而增大,則m的取值范圍是_________.

【答案】0<m≤2

【解析】

代入y=0求出拋物線與x軸交點的坐標,進而可得出0<m<3,由點P的橫坐標可得出OM=m、PM=3mm2,根據矩形的周長公式可得出C矩形OMON=-2m2+8m,再利用二次函數(shù)的性質即可得出當矩形PMON的周長隨點P的橫坐標m增大而增大時,m的取值范圍.

y=0時,有x2+3x=0,

解得:x1=0,x2=3,

0<m<3,

∵點P的橫坐標為m,

∴點P的坐標為(m,m2+3m),OM=m,PM=3mm2,

C矩形OMON=2(OM+PM)=2(m+3mm2)=2m2+8m,

∴當0<m≤2時,矩形PMON的周長隨點P的橫坐標m增大而增大.

故答案為:0<m≤2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學之道在于悟,希望同學們在問題(1)解決過程中有所感悟,再繼續(xù)探索研究問題(2)(3).

1)如圖,D在線段BC上,B=C=ADE,AD=DE.求證:△ABDDCE

2)如圖,ABC是等腰直角三角形,∠ACB=90°,AC=BC=4,在CB的延長線上有一動點D,連接AD,以AD為直角邊作等腰直角三角形ADE(∠ADE=90°,AD=DE ),連接EB并延長,與AC的延長線交于點F.當動點D在運動過程中,CF的長度是否會發(fā)生變化,如果變化,請說明理由;如果不變,請求出CF的長.

3)如圖,射線AMBNMAAB,NBAB,點PAB上一點, PA=1,PB=2,在射線AMBN上分別作點C、點D,滿足△CPD為等腰直角三角形.則△CPD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋擲一枚均勻的骰子(各面上的點數(shù)分別為1﹣6點)1次,落地后:

(1)朝上的點數(shù)有哪些結果?他們發(fā)生的可能性一樣嗎?

(2)朝上的點數(shù)是奇數(shù)與朝上的點數(shù)是偶數(shù),這兩個事件的發(fā)生可能性大小相等嗎?

(3)朝上的點數(shù)大于4與朝上的點數(shù)不大于4,這兩個事件的發(fā)生可能性大小相等嗎?如果不相等,那么哪一個可能性大一些?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,∠ABC為銳角,ABBC,點EAD上的一點,延長CEF,連接BFAD于點G使∠FBCDCE

求證:∠DF;

在直線AD找一點P,使以點B、P、C為頂點的三角形與以點C、D、P為頂點的三角形相似.(在原圖中標出準確P點的位置,必要時用直尺和圓規(guī)作出P點,保留作圖的痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③H的坐標是(7,80);④n=7.5.

其中說法正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B-20),點C8,0),與y軸交于點A

1)求二次函數(shù)y=ax2+bx+4的表達式;

2)連接ACAB,若點N在線段BC上運動(不與點B,C重合),過點NNM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;

3)連接OM,在(2)的結論下,求OMAC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個實數(shù)根;

(2)若此方程有一個根大于0且小于1,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,,點Cx軸正半軸上一動點,過點Ay軸于點E

如圖,若點C的坐標為,試求點E的坐標;

如圖,若點Cx軸正半軸上運動,且, 其它條件不變,連接DO,求證:OD平分

若點Cx軸正半軸上運動,當時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關系,并證明你的結論。

查看答案和解析>>

同步練習冊答案