【題目】如圖在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形叫格點(diǎn)三角形)

1請(qǐng)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的格點(diǎn)A1B1C1,

2請(qǐng)判斷A1B1C1DEF是否相似,若相似,請(qǐng)寫(xiě)出相似比;若不相似,請(qǐng)說(shuō)明理由.

【答案】(1)作圖見(jiàn)解析; (2)相似,相似比為1:2.

【解析】分析:(1)根據(jù)軸對(duì)稱(chēng)的性質(zhì)分別畫(huà)出點(diǎn)A,BC關(guān)于y軸的對(duì)稱(chēng)點(diǎn);(2)分別計(jì)算出兩個(gè)三角形的邊長(zhǎng),判斷對(duì)應(yīng)邊是否成比例.

詳解:(1)格點(diǎn)△A1B1C1如圖所示,

(2)相似,相似比為1:2.

由圖形得,A1B1=1,B1C1,C1A1,則A1B1:B1C1:C1A1;

DE=2,EFFD,則DE:EF:FD;

所以A1B1:B1C1:C1A1DE:EF:FD.

則△A1B1C1∽△DEF,且相似比為1:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(),在四邊形中,,,,分別是,上的點(diǎn),且.探究圖中線段,之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)到點(diǎn),使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

如圖(),若在四邊形中,,分別是,上的點(diǎn),且,上述結(jié)論是否仍然成立,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,tanABC=,ACB=45°,AD=8AD是邊BC上的高,垂足為D,BE=4,點(diǎn)M從點(diǎn)B出發(fā)沿BC方向以每秒3個(gè)單位的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)E出發(fā),與點(diǎn)M同時(shí)同方向以每秒1個(gè)單位的速度運(yùn)動(dòng).以MN為邊在BC的上方作正方形MNGH.點(diǎn)M到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)N也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(t0).

1)當(dāng)t為多少秒時(shí),點(diǎn)H剛好落在線段AB上?

2)當(dāng)t為多少秒時(shí),點(diǎn)H剛好落在線段AC上?

3)設(shè)正方形MNGHRtABC重疊部分的圖形的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式并寫(xiě)出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二青會(huì)開(kāi)幕式期間,出租車(chē)司機(jī)李師傅營(yíng)運(yùn)時(shí)是在南北走向的濱河西路上行進(jìn)的,如果規(guī)定向南為正,向北為負(fù),他這天上午所接位乘客的行車(chē)?yán)锍蹋▎挝唬?/span>)為:,,,.(假設(shè)相鄰兩位乘客上下車(chē)沒(méi)有時(shí)間間隔)

1)試判斷李師傅將最后一位乘客送到目的地時(shí),他在出發(fā)點(diǎn)的什么方向,距離出發(fā)地多少千米?

2)若汽車(chē)耗油量為,則這天上午李師傅接送乘客時(shí)出租車(chē)共耗油多少升?

3)若出租車(chē)起步價(jià)為元,起步里程為(包括,超過(guò)部分每千米元,問(wèn)李師傅這天上午共得車(chē)費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠B=90°AB=16cm,BC=12cmP、QABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng).

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4張分別標(biāo)有數(shù)字2,3,4,6的撲克牌,除正面的數(shù)字外,牌的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一張撲克牌并記下牌上的數(shù)字為x;小穎在剩下的3張撲克牌中隨機(jī)摸出一張撲克牌并記下牌上的數(shù)字為y,

1事件①:小紅摸出標(biāo)有數(shù)字3的牌,事件②:小穎摸出標(biāo)有數(shù)字1的牌,( )

A.事件①是必然事件事件②是不可能事件,

B.事件①是隨機(jī)事件,事件②是不可能事件,

C.事件①是必然事件,事件②是隨機(jī)事件

D.事件①是隨機(jī)事件,事件②是必然事件

2|x-y|≤2,則說(shuō)明小紅與小穎心領(lǐng)神會(huì),請(qǐng)求出她們心領(lǐng)神會(huì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次打籃球時(shí),籃球傳出后的運(yùn)動(dòng)路線為如圖所示的拋物線,以小明所站立的位置為原點(diǎn)O建立平面直角坐標(biāo)系,籃球出手時(shí)在O點(diǎn)正上方1m處的點(diǎn)P.已知籃球運(yùn)動(dòng)時(shí)的高度y(m)與水平距離x(m)之間滿(mǎn)足函數(shù)表達(dá)式y=-x2+x+c.

1求y與x之間的函數(shù)表達(dá)式;

2球在運(yùn)動(dòng)的過(guò)程中離地面的最大高度

3小亮手舉過(guò)頭頂,跳起后的最大高度為BC=2.5m若小亮要在籃球下落過(guò)程中接到球,求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

在學(xué)習(xí)可化為一元一次方程的分式方程及其解法的過(guò)程中,老師提出一個(gè)問(wèn)題:若關(guān)于x的分式方程=1的解為正數(shù),求a的取值范圍.

經(jīng)過(guò)獨(dú)立思考與分析后,小杰和小哲開(kāi)始交流解題思路如下:

小杰說(shuō):解這個(gè)關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問(wèn)題解決.

小哲說(shuō):你考慮的不全面,還必須保證x≠4,即a+4≠4才行.

(1)請(qǐng)回答:   的說(shuō)法是正確的,并簡(jiǎn)述正確的理由是   ;

(2)參考對(duì)上述問(wèn)題的討論,解決下面的問(wèn)題:

若關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案