【題目】如圖,在矩形ABCD中,點(diǎn)EBC邊上的一個(gè)動(dòng)點(diǎn),沿著AE翻折矩形,使點(diǎn)B落在點(diǎn)F處若AB3,BCAB,解答下列問(wèn)題:

1)在點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,求點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng);

2)當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),試判斷FCAE的位置關(guān)系,并說(shuō)明你的理由;

3)當(dāng)點(diǎn)F在矩形ABCD內(nèi)部且DFCD時(shí),求BE的長(zhǎng).

【答案】(1);(2)FCAE的位置關(guān)系為:FCAE;(3

【解析】

(1)根據(jù)翻折的性質(zhì)可得AF=AB,∠BAE=∠EAF,當(dāng)當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)C時(shí)利用三角函數(shù)求出∠BAF的度數(shù),最后再根據(jù)弧長(zhǎng)公式,求出點(diǎn)F的運(yùn)動(dòng)路徑長(zhǎng).(2)根據(jù)題意知道BE=EF=EC,再利用三角形內(nèi)角和∠BFE+∠CFE=90°,最后根據(jù)翻折的性質(zhì)求出∠BHE=90°,即可證出FC與AE的位置關(guān)系.(3) 過(guò)點(diǎn)F作FM⊥AD于點(diǎn)M,延長(zhǎng)MF交BC于點(diǎn)N,根據(jù)題意求出AM的值,然后利用勾股定理求出MF,根據(jù)矩形的性質(zhì)得到FN, 設(shè)BEx,則ENx,利用勾股定理求出BE的長(zhǎng).

解:(1)由翻折的性質(zhì)得:AF=AB,∠BAE=∠EAF,

∴點(diǎn)F運(yùn)動(dòng)的路徑是以A為圓心,AB為半徑,∠BAF為圓心角的弧長(zhǎng),如圖1所示:

當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)C時(shí),tan∠BAE==

∴∠BAE=60°,∠BAF=120°,

∴點(diǎn)F的運(yùn)動(dòng)路徑長(zhǎng)為:=2π;

(2)FC與AE的位置關(guān)系為:FC∥AE;理由如下:

連接BF交AE于點(diǎn)H,如圖2所示:

由折疊性質(zhì)得:BE=EF,

∵BE=CE,

∴BE=EF=EC,

∴∠FBE=∠BFE,∠CFE=∠FCE,

∵∠FBE+∠BFE+∠CFE+∠FCE=180°,

∴∠BFE+∠CFE=90°,即∠BFC=90°,

由折疊的性質(zhì)得:BF⊥AE,

∴∠BHE=90°,

∴FC∥AE;

(3)過(guò)點(diǎn)F作FM⊥AD于點(diǎn)M,延長(zhǎng)MF交BC于點(diǎn)N,如圖3所示:

∵AB=3,BC=AB,

∴BC=3,

∵四邊形ABCD是矩形,

∴AB=CD=3,DF=DC=3,

∴AF=DF,

∵M(jìn)F⊥AD,

∴AM=AD=

在Rt△MAF中,MF=,

∵∠BAD=∠B=90°,MF⊥AD,

∴四邊形ABNM是矩形,

∴BN=AM=,MN=AB=3,

∴FN=MN﹣MF=3﹣,

設(shè)BE=x,則EN=﹣x,

由折疊的性質(zhì)得:FE=BE=x,

在Rt△EFN中,EF2﹣EN2=FN2

即:x2﹣(﹣x)2=(2,

解得:x=,

∴BE的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊可繞點(diǎn)開(kāi)合,在邊上有一固定點(diǎn),支柱可繞點(diǎn)轉(zhuǎn)動(dòng),邊上有六個(gè)卡孔,其中離點(diǎn)最近的卡孔為,離點(diǎn)最遠(yuǎn)的卡孔為.當(dāng)支柱端點(diǎn)放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺(tái)面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測(cè)得的長(zhǎng)為,,支柱.

(1)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),求的度數(shù);

(2)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),,若相鄰兩個(gè)卡孔的距離相同,求此間距.(結(jié)果精確到十分位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,,,過(guò)點(diǎn)作邊的垂線的延長(zhǎng)線于點(diǎn),點(diǎn)是垂足,連接、于點(diǎn).則下列結(jié)論:四邊形是正方形;;;,正確的個(gè)數(shù)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列7個(gè)代數(shù)式,ab,ac,中,其值為正的式子的個(gè)數(shù)為(

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 4個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某市舉辦的以校園文明為主題的中小學(xué)生手抄報(bào)比賽中,各學(xué)校認(rèn)真組織初賽并按比例篩選出較好的作品參加全市決賽,所有參加市級(jí)決賽的作品均獲獎(jiǎng),獎(jiǎng)項(xiàng)分為一等獎(jiǎng).二等獎(jiǎng)、三等獎(jiǎng)和優(yōu)秀獎(jiǎng).現(xiàn)從參加決賽的作品中隨機(jī)抽取部分作品并將獲獎(jiǎng)結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖請(qǐng)你根據(jù)圖中所給信息解答下列問(wèn)題:

1)一等獎(jiǎng)所占的百分比是多少?三等獎(jiǎng)的人數(shù)是多少?

2)求三等獎(jiǎng)所對(duì)應(yīng)的扇形圓心角的度數(shù);

3)若參加決賽的作品有3000份,估計(jì)獲得一等獎(jiǎng)和二等獎(jiǎng)的總?cè)藬?shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開(kāi)展了主題為垃圾分類(lèi),綠色生活新時(shí)尚的宣傳活動(dòng),為了解學(xué)生對(duì)垃圾分類(lèi)知識(shí)的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、待合格四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制了如下不完整的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.

等級(jí)

頻數(shù)

頻率

優(yōu)秀

21

42%

良好

m

40%

合格

6

n%

待合格

3

6%

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)本次調(diào)查隨機(jī)抽取了 名學(xué)生;表中m n ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校有2000名學(xué)生,請(qǐng)你估計(jì)該校掌握垃圾分類(lèi)知識(shí)達(dá)到優(yōu)秀良好等級(jí)的學(xué)生共有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地間的直線公路長(zhǎng)為千米.一輛轎車(chē)和一輛貨車(chē)分別沿該公路從甲、乙兩地以各自的速度勻速相向而行,貨車(chē)比轎車(chē)早出發(fā)小時(shí),途中轎車(chē)出現(xiàn)了故障,停下維修,貨車(chē)仍繼續(xù)行駛.小時(shí)后轎車(chē)故障被排除,此時(shí)接到通知,轎車(chē)立刻掉頭按原路原速返回甲地(接到通知及掉頭時(shí)間不計(jì)).最后兩車(chē)同時(shí)到達(dá)甲地,已知兩車(chē)距各自出發(fā)地的距離(千米)與轎車(chē)所用的時(shí)間(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

1)貨車(chē)的速度是_______千米/小時(shí);轎車(chē)的速度是_______千米/小時(shí);值為_______

2)求轎車(chē)距其出發(fā)地的距離(千米)與所用時(shí)間(小時(shí))之間的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍;

3)請(qǐng)直接寫(xiě)出貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作體驗(yàn):如圖,在矩形ABCD中,點(diǎn)E、F分別在邊AD、BC上,將矩形ABCD沿直線EF折疊,使點(diǎn)D恰好與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C.點(diǎn)P為直線EF上一動(dòng)點(diǎn)(不與E、F重合),過(guò)點(diǎn)P分別作直線BEBF的垂線,垂足分別為點(diǎn)MN,以PM、PN為鄰邊構(gòu)造平行四邊形PMQN.

(1)如圖1,求證:BEBF

(2)特例感知:如圖2,若DE5,CF2,當(dāng)點(diǎn)P在線段EF上運(yùn)動(dòng)時(shí),求平行四邊形PMQN的周長(zhǎng);

(3)類(lèi)比探究:若DEaCFb.

①如圖3,當(dāng)點(diǎn)P在線段EF的延長(zhǎng)線上運(yùn)動(dòng)時(shí),試用含a、b的式子表示QMQN之間的數(shù)量關(guān)系,并證明;

②如圖4,當(dāng)點(diǎn)P在線段FE的延長(zhǎng)線上運(yùn)動(dòng)時(shí),請(qǐng)直接用含a、b的式子表示QMQN之間的數(shù)量關(guān)系.(不要求寫(xiě)證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線x1對(duì)稱(chēng),點(diǎn)A的坐標(biāo)為(﹣10).

1)求二次函數(shù)的表達(dá)式;

2)連接BC,若點(diǎn)Py軸上時(shí),BPBC的夾角為15°,求線段CP的長(zhǎng)度;

3)當(dāng)axa+1時(shí),二次函數(shù)yx2+bx+c的最小值為2a,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案