【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過(guò)C點(diǎn)的切線與AB的延長(zhǎng)線交于點(diǎn)D,CEAB交⊙O于點(diǎn)E,連接AC、BC、AE.

(1)求證:①∠DCB=CAB;CDCE=CBCA;

(2)作CGAB于點(diǎn)G.若tan∠CAB=(k1),求的值(用含k的式子表示).

【答案】(1)見(jiàn)解析;(2)

【解析】分析:(1)①過(guò)點(diǎn)C作直徑CF,連接BF.即可得又由直徑所對(duì)的圓周角等于直角,可得又由切線的性質(zhì),可得是直角,即可證得 ②由ECAB,易證得∠4=3=BCD.有圓的內(nèi)接四邊形的對(duì)角互補(bǔ),可得∠CBD=AEC.即可證得則得到
(2)在中,利用三角函數(shù)的性質(zhì),即可求得的值.

詳解:1)證明:①如圖1

作直徑CF,連接BF.

CDC

OCCD,

∴∠BCD=CAB.

②∵ECABBCD=3,

∴∠4=3=BCD.

∴∠CBD=AEC.

ACEDCB.

CDCE=CBCA.

2)如圖2,連接EB,交OC于點(diǎn)H,

CGAB于點(diǎn)G,

∴∠3=BCG.

AE=BC

∵∠3=4.

∴∠3=EBG.

∴∠BCG=EBG.

∴在RtHGB,

RtBCG,

設(shè)HG=a,

ECAB,

∴△ECHBGH.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)探索:如圖1,在邊長(zhǎng)為的正方形紙片的4個(gè)角都剪去1個(gè)邊長(zhǎng)是的正方形.試用含的式子表示紙片剩余部分的面積為_______________________;

2)變式:如圖2,在邊長(zhǎng)為的正方形紙片的4個(gè)角都剪去一個(gè)相同的扇形,扇形的半徑為,用表示紙片剩余部分面積為______________________,剩余部分圖形的周長(zhǎng)為_____________________;

3)拓展:世博會(huì)中國(guó)國(guó)家館模型的平面圖如圖3所示,其外框是一個(gè)大正方形,中間四個(gè)全等的小正方形(陰影部分)是支撐展館的核心筒,標(biāo)記字母的五個(gè)全等的正方形是展廳,展廳的邊長(zhǎng)為,已知核心筒的邊長(zhǎng)比展廳的邊長(zhǎng)的一半多1米,用含有的式子表示外框的邊長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個(gè)進(jìn)價(jià)為40元,經(jīng)市場(chǎng)預(yù)測(cè),銷售定價(jià)為50元,可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).設(shè)每個(gè)定價(jià)增加x元.

(1)寫出售出一個(gè)可獲得的利潤(rùn)是多少元(用含x的代數(shù)式表示)?

(2)商店若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)定價(jià)為多少元?應(yīng)進(jìn)貨多少個(gè)?

(3)商店若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤(rùn)是多少?

【答案】(1)x+10元;(2)每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè).(3)每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250元.

【解析】試題分析:(1)根據(jù)利潤(rùn)=銷售價(jià)-進(jìn)價(jià)列關(guān)系式,(2)總利潤(rùn)=每個(gè)的利潤(rùn)×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.

試題解析:由題意得:(1)50+x-40=x+10(元),

(2)設(shè)每個(gè)定價(jià)增加x,

列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個(gè)定價(jià)為70,應(yīng)進(jìn)貨200個(gè),

(3)設(shè)每個(gè)定價(jià)增加x,獲得利潤(rùn)為y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15時(shí),y有最大值為6250,所以每個(gè)定價(jià)為65元時(shí)得最大利潤(rùn),可獲得的最大利潤(rùn)是6250.

型】解答
結(jié)束】
24

【題目】猜想與證明:

如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若MAF的中點(diǎn),連接DM、ME,試猜想DMME的關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將猜想與證明中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為   

(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市提倡“誦讀中華經(jīng)典,營(yíng)造書香校園”的良好誦讀氛圍,促進(jìn)校園文化建設(shè),進(jìn)而培養(yǎng)學(xué)生的良好誦讀習(xí)慣,使經(jīng)典之風(fēng)浸漫校園.某中學(xué)為了了解學(xué)生每周在校經(jīng)典誦讀時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

2t3

4

0.1

3t4

10

0.25

4t5

a

0.15

5t6

8

b

6t7

12

0.3

合計(jì)

40

1

1)表中的a   ,b   

2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)全;

3)若該校共有1200名學(xué)生,試估計(jì)全校每周在校參加經(jīng)典誦讀時(shí)間至少有4小時(shí)的學(xué)生約為多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,CE平分∠BCD,交直線AD于點(diǎn)E,若CD=6,AE=2,則tan∠ACE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)yax+bybx+a的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個(gè)解(a<b),且(c﹣12)2|d﹣16|互為相反數(shù).

(1)填空:a=   、b=   、c=   、d=   

(2)若線段AB3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD1單位長(zhǎng)度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;

(3)在(2)的條件下,線段AB,線段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問(wèn)是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O00),點(diǎn)A50),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設(shè)BDCE相交于點(diǎn)O,點(diǎn)M,N分別為線段BOCO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案