【題目】如圖,A,B兩點在數(shù)軸上,A點對應的有理數(shù)是﹣2,線段AB=12,點P從點A出發(fā),沿AB以每秒1個單位長度的速度向終點B勻速運動;同時點Q從點B出發(fā),沿BA以每秒2個單位長度的速度向終點A勻速運動,設運動時間為ts
(1)請在數(shù)軸上標出原點O和B點所對應的有理數(shù):
(2)直接寫出PA= ,BQ= (用含t的代數(shù)式表示);
(3)當P,Q兩點相遇時,求t的值;
(4)當P,Q兩點相距5個單位長度時,直接寫出線段PQ的中點對應的有理數(shù).
【答案】(1)見解析;(2)t,2t;(3)t=4;(4)線段PQ的中點對應的有理數(shù)或.
【解析】
(1)∵A點對應的有理數(shù)是﹣2,線段AB=12,則B點表示的數(shù)是10;
(2)由題意可得:PA=t,BQ=2t;
(3)相遇時t+2t=12,則t=4;
(4)由題意可知,P點表示的數(shù)為﹣2+t,Q點表示的數(shù)是10﹣2t,設PQ的中點M的表示的數(shù)是4﹣,由題意可得|PQ|=|12﹣3t|=5,解得t=或t=,當t=時,M點表示的數(shù)為;當t=,M點表示的數(shù)為.
解:(1)∵A點對應的有理數(shù)是﹣2,線段AB=12,
∴B點表示的數(shù)是10;
(2)由題意可得:PA=t,BQ=2t,
故答案為t,2t;
(3)相遇時t+2t=12,
∴t=4;
(4)由題意可知,P點表示的數(shù)為﹣2+t,Q點表示的數(shù)是10﹣2t,
設PQ的中點M的表示的數(shù)是4﹣,
∵P,Q兩點相距5個單位長度,
∴|PQ|=|12﹣3t|=5,
∴t=或t=,
當t=時,M點表示的數(shù)為;
當t=,M點表示的數(shù)為;
綜上所述:線段PQ的中點對應的有理數(shù)或.
科目:初中數(shù)學 來源: 題型:
【題目】小學時候大家喜歡玩的幻方游戲,老師稍加創(chuàng)新改成了“幻圓”游戲,現(xiàn)在將﹣1、2、﹣3、4、﹣5、6、﹣7、8分別填入圖中的圓圈內,使橫、豎以及內外兩圈上的4個數(shù)字之和都相等,老師已經幫助同學們完成了部分填空,則圖中a+b的值為( 。
A. ﹣6或﹣3 B. ﹣8或1 C. ﹣1或﹣4 D. 1或﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因為12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1.
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,點為直線上一定點,為直線上的動點,在直線與之間且在線段的右方作點,使得.設為銳角).
(1)求與的和;(提示過點作
(2)當點在直線上運動時,試說明;
(3)當點在直線上運動的過程中,若平分,也恰好平分,請求出此時的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB和∠COD都是直角,射線OE是∠AOC的平分線.
(1)把圖中相等的角寫出來,并說明它們相等的理由;
(2)若∠BOC=40°,直接寫出∠BOD= 度,∠COE= 度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙在一段長2000米的直線公路上進行跑步練習,起跑時甲在起點,乙在甲的前面,若甲、乙同時起跑至甲到達終點的過程中,甲乙之間的距離y(米)與 時間x(秒)之間的函數(shù)關系如圖所示.有下列說法:
①甲的速度為5米/秒;②100秒時甲追上乙;③經過50秒時甲乙相距50米;④甲到終點時,乙距離終點300米.其中正確的說法有( )
A. 4個 B. 3個
C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中∠ADC=∠ABC=90°,AD=CD,DP⊥AB于點P,若四邊形ABCD的面積是9,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-(x+k)(x-5)交x軸于點A、B(A左B右),交y軸交于點C,BD⊥AC垂足為D,BD與OC交于點E,且CE=4OE.
⑴如圖1,求拋物線的解析式;
⑵如圖2,點M為拋物線的頂點,MH⊥x軸,垂足為H,點P為第一象限MH右側拋物線上一點,PN⊥x軸于點N,PA交MH于點F,FG⊥PN于點G,求tan∠GBN的值;
⑶如圖3,在⑵的條件下,過點P作BG的平行線交直線BC于點S,點T為直線PS上一點,TC交拋物線于點Q,若CQ=QT,TS=,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相交于點D,與AB交于點E,AD平分∠FAB,連接ED并延長交AC的延長線于點F.
(1)求證:BC為⊙O的切線.
(2)求證:AE=AF;
(3)若DE=3,sin∠BDE=,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com