【題目】如圖,在ABC中,MPNQ分別垂直平分ABAC,

1)若APQ的周長為20,求BC的長;

2)若∠BAC110°,求∠PAQ的度數(shù).

【答案】1BC=20;(2)∠PAQ=40°

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)得到PA=PB,QA=QC,根據(jù)三角形周長公式計(jì)算;

2)根據(jù)三角形內(nèi)角和定理得到∠B+C=70°,根據(jù)等腰三角形的性質(zhì)計(jì)算.

解:(1)∵MPNQ分別垂直平分ABAC,
PA=PB,QA=QC,
∵△APQ的周長為20,
AP+PQ+AQ=BP+PQ+QC=20,
BC=20
2)∵∠BAC=110°,
∴∠B+C=70°,
PA=PBQA=QC,
∴∠PAB=B,∠QAC=C,
∴∠PAB+QAC=B+C=70°,
∴∠PAQ=110°70°=40°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動,且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.

(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是

(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動時,連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請直接寫出線段CK長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現(xiàn)將RtADC繞點(diǎn)C順時針旋轉(zhuǎn)90°,點(diǎn)A旋轉(zhuǎn)后的位置為點(diǎn)E,點(diǎn)D旋轉(zhuǎn)后的位置為點(diǎn)F.以C為原點(diǎn),以BC所在直線為x軸,以過點(diǎn)C垂直于BC的直線為y軸,建立如圖②的平面直角坐標(biāo)系.

(1)求直線AE的解析式;

(2)將RtEFC沿x軸的負(fù)半軸平行移動,如圖③.設(shè)OC=x(0<x≤9),RtEFCRtABO的重疊部分面積為s;求當(dāng)x=1x=8時,s的值;

(3)在(2)的條件下s是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn)。

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)點(diǎn)Mm,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQAB交拋物線于點(diǎn)Q,過點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長;

(3)當(dāng)矩形PQNM的周長最大時,m的值是多少?并求出此時的AEM的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

⑴請你補(bǔ)全這個輸水管道的圓形截面;

⑵若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且∠D=30°,下列四個結(jié)論:①OABC;BC=6cm;sinAOB=;④四邊形ABOC是菱形.其中正確結(jié)論的序號是( )

A. ①③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形紙片,沿對角線折疊,點(diǎn)的對應(yīng)點(diǎn)為,相交于點(diǎn),則下列結(jié)論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點(diǎn)QQO⊥BD,垂足為O,連接OA、OP.

(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?

(2)請判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;

(3)在平移變換過程中,設(shè)y=SOPB,BP=x(0≤x≤2),求yx之間的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=1,ab=-1.設(shè)

(1)計(jì)算S2;

(2)請閱讀下面計(jì)算S3的過程:

=

=

=

∵a+b=1,ab=-1,

_______.

你讀懂了嗎?請你先填空完成(2)中S3的計(jì)算結(jié)果;再計(jì)算S4

(3)猜想并寫出, , 三者之間的數(shù)量關(guān)系(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S3.

查看答案和解析>>

同步練習(xí)冊答案