【題目】如圖,△ABD是邊長為3的等邊三角形,E,F分別是邊AD,AB上的動點,若∠ADC=∠ABC=90°,則△CEF周長的最小值為______.
【答案】6
【解析】如圖,因為,所以分別作點C關于AD、AB的對稱點M、N,連接MN,MN與AD交于點E,與AB交于點F,連接CE、CF,則此時△CEF的周長最小,
連接AC,交MN于點P,
由作圖可知CE=ME、CF=FN,∴△CEF的周長:CE+CF+EF=MN,
∵△ABD是等邊三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,
∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,
∴CD=CB,
∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,
又∵AC=AC,∴△ADC≌△ABC,
∴CD=CB,∠DAC=∠BAC=∠DAB=30°,
∴AC=2CD,∠M=∠DAC,∴AC=CM,
又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,
∴MN=2MP=6,
即△CEF周長的最小值是6,
故答案為:6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△CDE的頂點C點坐標為C(1,﹣2),點D的橫坐標為 , 將△CDE繞點C旋轉(zhuǎn)到△CBO,點D的對應點B在x軸的另一個交點為點A.
(1)圖中,∠OCE等于多少;
(2)求拋物線的解析式;
(3)拋物線上是否存在點P,使S△PAE=S△CDE?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上有A,B,C,D四個點,且2AB=BC=3CD,若A,D兩點表示的數(shù)分別為-5,6,點E為BD的中點,則該數(shù)軸上點E表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一寬為2cm的刻度尺在圓上移動,當刻度尺的一邊與圓相切時,另一邊與圓兩個交點處的讀數(shù)恰好為“1”和“4”(單位:cm),則該圓的半徑為( )
A.5cm
B.cm
C.cm
D.cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O與正方形ABCD的兩邊AB、AD相切,且DE與⊙O相切于E點.若正方形ABCD的周長為44,且DE=6,則sin∠ODE=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是多少;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校剛完成一批結(jié)構(gòu)相同的學生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級技工去鋪4個宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時間內(nèi)6名二級技工鋪4個宿舍剛好完成,已知每名一級技工比二級技工一天多鋪3 m2瓷磚.
(1)求每個宿舍需要鋪瓷磚的地板面積.
(2)現(xiàn)該學校有20個宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊有4名一級技工和6名二級技工,一開始有4名一級技工來鋪瓷磚,3天后,學校根據(jù)實際情況要求2天后必須完成剩余的任務,所以決定加入一批二級技工一起工作,問需要再安排多少名二級技工才能按時完成任務
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)若∠AOC=30°,求∠DOE的度數(shù);
(2)若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(3)在(1)的條件下,∠BOC的內(nèi)部有一射線OG,射線OG將∠BOC分為1:4兩部分,求∠DOG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com