【題目】觀察發(fā)現(xiàn):如圖(1),⊙O是△ADC的外接圓,點(diǎn)B是邊CD上的一點(diǎn),且△ABC是等邊三角形.OD與AB交于點(diǎn)E,以O為圓心、OE為半徑的圓交AB于點(diǎn)F,連接CF、OF.
(1)求∠AOD的度數(shù);
(2)線段AE、CF有何大小關(guān)系?證明你的猜想.
拓展應(yīng)用:如圖(2),△HJI是等邊三角形,點(diǎn)K是IH延長(zhǎng)線上的一點(diǎn).點(diǎn)O是△JKI的外接圓圓心,OK與JH相交于點(diǎn)E.如果等邊三角形△JHI的邊長(zhǎng)為2,請(qǐng)直接寫(xiě)出JE的最小值和此時(shí)∠JEO的度數(shù).
【答案】觀察發(fā)現(xiàn):(1)∠AOD=120°;(2)結(jié)論:AE=CF.理由見(jiàn)解析;拓展應(yīng)用: JE的最小值為,此時(shí)∠JEO=45°.
【解析】
觀察發(fā)現(xiàn):(1)利用圓周角定理即可解決問(wèn)題;
(2)結(jié)論:AE=CF.想辦法證明△AOE≌△COF即可;
拓展應(yīng)用:以O為圓心,以OE長(zhǎng)為半徑作圓,交JH于F,連結(jié)IF,則由以上結(jié)論可得:JE=IF.根據(jù)垂線段最短即可解決問(wèn)題;
解:
觀察發(fā)現(xiàn):(1)∵△ABC是等邊三角形,
∴∠ACB=60°,
∴∠AOD=2∠ACB=120°
(2)結(jié)論:AE=CF.
理由如下:∵∠AOD=120°,
∴∠OEF+∠OAF=60°,
∵∠OAC+∠OAF=60°,
∴∠OEF=∠OAC,
∵OE=OF,OA=OC,
∴∠OEF=∠OFE=∠OAC=∠OCA,
∴∠EOF=∠AOC,
∴∠EOF+∠AOF=∠AOC+∠AOF,
∴∠AOE=∠COF,
∴△AOE≌△COF,
∴AE=CF.
拓展應(yīng)用:以O為圓心,以OE長(zhǎng)為半徑作圓,交JH于F,連結(jié)IF,則由以上結(jié)論可得:JE=IF.
當(dāng)IF⊥JH時(shí)IF最小,IF=JIsin60°=2×= ,
∵∠FJO=∠OIF,∠FGJ=∠OGI,
∴∠JOI=∠JFI=90°,
∴∠OJI=45°,
∴∠JEO=∠OJI=45°,
∴JE的最小值為,此時(shí)∠JEO=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)I為△ABC的內(nèi)心,AI的延長(zhǎng)線交△ABC的外接圓于D,以D為圓心,DI為半徑畫(huà)弧,是否經(jīng)過(guò)點(diǎn)B與點(diǎn)C?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,∠CBD=30°,則DF的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,M是AD的中點(diǎn),點(diǎn)E是線段AB上一動(dòng)點(diǎn),連結(jié)EM并延長(zhǎng)交線段CD的延長(zhǎng)線于點(diǎn)F.
(1)如圖1,求證:AE=DF;
(2)如圖2,過(guò)點(diǎn)M作MG⊥EF交線段BC于點(diǎn)G,若ME=MG,求證:BE=CG;
(3)如圖3,若AB=2,過(guò)點(diǎn)M作MG⊥EF交線段BC的延長(zhǎng)線于點(diǎn)G.求線段AE長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m-1)x2-(m-2)x+m=0.
(1)當(dāng)m取何值時(shí)方程有一個(gè)實(shí)數(shù)根?
(2)當(dāng)m取何值時(shí)方程有兩個(gè)實(shí)數(shù)根?
(3)設(shè)方程的兩根分別為x1、x2,且x1x2=m+1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解本地七年級(jí)學(xué)生寒假期間參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了部分七年級(jí)學(xué)生寒假參加社會(huì)實(shí)踐活動(dòng)的天數(shù)(“A﹣﹣﹣不超過(guò)5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上的信息,回答下列問(wèn)題:
(1)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(2)所抽查學(xué)生參加社會(huì)實(shí)踐活動(dòng)天數(shù)的眾數(shù)是 (選填:A、B、C、D、E);
(3)若該市七年級(jí)約有2000名學(xué)生,請(qǐng)你估計(jì)參加社會(huì)實(shí)踐“活動(dòng)天數(shù)不少于7天”的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點(diǎn),則∠AEB ∠ACB(填“>”“<”“=”);
問(wèn)題探究
(2)如圖②,在正方形ABCD中,P為CD邊上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P位于何處時(shí),∠APB最大?并說(shuō)明理由;
問(wèn)題解決
(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對(duì)廣告牌走近時(shí),在P處看廣告效果最好(視角最大),請(qǐng)你在圖③中找到點(diǎn)P的位置,并計(jì)算此時(shí)小剛與大樓AD之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b的圖象與x軸,y軸交于A,B;與直線y2=kx交于P(2,1),且PO=PA.
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求a,b的值;
(3)點(diǎn)D為直線y1=ax+b上一動(dòng)點(diǎn),其橫坐標(biāo)為m,(m<2),DF⊥x軸于點(diǎn)F,交y2=kx于點(diǎn)E,且DF=3EF,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com