【題目】I△ABC的內(nèi)心,AI的延長線交△ABC的外接圓于D,以D為圓心,DI為半徑畫弧,是否經(jīng)過點B與點C?說明理由.

【答案】D為圓心,DI為半徑畫弧,必經(jīng)過點B與點C,理由見解析

【解析】

連接BI,根據(jù)三角形的內(nèi)切圓的意義和圓周角定理得到BD=DC,根據(jù)三角形外角性質(zhì)求出∠IBD=∠BID,根據(jù)等腰三角形的判定求出BD=ID即可.

證明:連接BI,

IABC的內(nèi)心,

∴∠BAD=DAC,ABI=CBI,

BD=DC,

∵∠BID=ABI+BAD,IBD=CBI+DBC,

∵∠CAD=BAD=DBC,

∴∠DBI=BID,

BD=DI,

BD=CD=ID,

∴以D為圓心,DI為半徑畫弧,必經(jīng)過點B與點C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿OCDO的路線勻速運動,設(shè)∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關(guān)系圖是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,交于點E,現(xiàn)有三個條件:①;②,③,請你從三個條件中選出兩個作為條件,另一個作為結(jié)論,組成一個真命題,并給予證明.

1)條件是 ______ ;結(jié)論是 ______ (填序號)

2)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,E為⊙O上的兩點,AC平分∠EAB,CDAED.

(1)求證:CD為⊙O的切線;

(2)過點CCFABF,如圖2,判斷CFAF,DE之間的數(shù)量關(guān)系,并證明之;

(3)AD-OA=1.5,AC=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(-2,3),B(-60),C(-10)

(1)請直接寫出點B關(guān)于點A對稱的點的坐標;

(2)△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點的坐標;

(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點DE,FG,量得∠CGD=42°。

1)求∠CEF的度數(shù);

2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖所示.點H,B在直尺上的讀數(shù)分別為4,134,求BC的長(結(jié)果保留兩位小數(shù)).

(參考數(shù)據(jù):sin42°≈067,cos42°≈074tan42°≈090

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、EBC上的點,AD平分∠BAE,CA=CD

1)求證:∠CAE=∠B

2)若∠B50°,∠C3DAB,求∠C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形一邊長為12cm,那么它的兩條對角線的長度可以是( 。

A. 8cm和14cm B. 10cm 和14cm C. 18cm和20cm D. 10cm和34cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察發(fā)現(xiàn):如圖(1),⊙O△ADC的外接圓,點B是邊CD上的一點,且△ABC是等邊三角形.ODAB交于點E,以O為圓心、OE為半徑的圓交AB于點F,連接CF、OF.

(1)∠AOD的度數(shù)

(2)線段AE、CF有何大小關(guān)系?證明你的猜想.

拓展應(yīng)用:如圖(2),△HJI是等邊三角形,點KIH延長線上的一點.點O△JKI的外接圓圓心,OKJH相交于點E.如果等邊三角形△JHI的邊長為2,請直接寫出JE的最小值和此時∠JEO的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案