【題目】Rt△ACB中,∠C=90°,點(diǎn)OAB上,以O為圓心,OA長(zhǎng)為半徑的圓與ACAB分別交于點(diǎn)D,E,且∠CBD=∠A

1)判斷直線(xiàn)BD⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若AD∶AO=8∶5,BC=3,求BD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2BD=.

【解析】試題分析:(1)由等腰三角形的性質(zhì)和已知得出∠ODA=∠CBD,由直角三角形的性質(zhì)得出∠CBD+∠CDB=90°,因此∠ODA+∠CDB=90°,得出∠ODB=90°,即可得出結(jié)論;(2)設(shè)AD=8k,則AO=5k,AE=2OA=10k,由圓周角定理得出∠ADE=90°,△ADE∽△BCD,得出對(duì)應(yīng)邊成比例,即可求出BD的長(zhǎng).

試題解析:(1BD⊙O的切線(xiàn);理由如下:∵OA=OD,∴∠ODA=∠A∵∠CBD=∠A,∴∠ODA=∠CBD,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠ODA+∠CDB=90°∴∠ODB=90°,即BD⊥OD∴BD⊙O的切線(xiàn);(2)設(shè)AD=8k,則AO=5k,AE=2OA=10k,∵AE⊙O的直徑,∴∠ADE=90°,∴∠ADE=∠C,又∵∠CBD=∠A,∴△ADE∽△BCD,即,解得:BD=.所以BD的長(zhǎng)是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接PA,PB,PC.將PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到P′CB的位置(如圖).

(1)設(shè)AB的長(zhǎng)為a,PB的長(zhǎng)為b(ba),求PAB旋轉(zhuǎn)到P′CB的過(guò)程中邊PA所掃過(guò)區(qū)域(圖中陰影部分)的面積;

(2)若PA=2,PB=4,APB=135°,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖16,拋物線(xiàn)y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線(xiàn)的解析式.

(2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線(xiàn)上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)小李某天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車(chē)?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問(wèn):(1)將最后一位乘客送到目的地時(shí),小李在什么位置?

2)若汽車(chē)耗油量為(升/千米),這天上午小李接送乘客,出租車(chē)共耗油多少升?

3)若出租車(chē)起步價(jià)為8元,起步里程為(包括),超過(guò)部分每千米1.2元,問(wèn)小李這天上午共得車(chē)費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),霧霾天氣給人們的生活帶來(lái)很大影響,空氣質(zhì)量問(wèn)題倍受人們關(guān)注,某學(xué)校計(jì)劃在教室內(nèi)安裝空氣凈化裝置,需購(gòu)進(jìn)A、B兩種設(shè)備,已知:購(gòu)買(mǎi)1臺(tái)A種設(shè)備和2臺(tái)B種設(shè)備需要3.5萬(wàn)元;購(gòu)買(mǎi)2臺(tái)A種設(shè)備和1臺(tái)B種設(shè)備需要2.5萬(wàn)元.

1)求每臺(tái)A種、B種設(shè)備各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)A種和B種設(shè)備共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,請(qǐng)你通過(guò)計(jì)算,求至少購(gòu)買(mǎi)A種設(shè)備多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.

(1)試說(shuō)明無(wú)論k取何值時(shí),這個(gè)方程一定有實(shí)數(shù)根;

(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個(gè)方程的兩個(gè)根,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各式因式分解:

(1).

(2).

(3)3x(xy)36y(yx)2.

(4).

(5).

(6)a+4)(a4+3a+2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明用三個(gè)等腰三角形(圖中①②③)拼成了一個(gè)平行四邊形ABCD,且,則=_____ 度.

查看答案和解析>>

同步練習(xí)冊(cè)答案