精英家教網 > 初中數學 > 題目詳情

【題目】(2016山東省煙臺市)某中學廣場上有旗桿如圖1所示,在學習解直角三角形以后,數學興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC4米,落在斜坡上的影長CD3米,ABBC,同一時刻,光線與水平面的夾角為72°,1米的豎立標桿PQ在斜坡上的影長QR2米,求旗桿的高度(結果精確到0.1米).(參考數據:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

【答案】13.8.

【解析】

試題如圖,作CM∥ABADM,MN⊥ABN,根據=,可求得CM的長,在RT△AMN中利用三角函數求得AN的長,再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長,最后根據AB=AN+BN即可求得AB的長.

試題解析:如圖作CM∥ABADM,MN⊥ABN

由題意=,即=CM=,

RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°

∴tan72°=,

∴AN≈12.3

∵MN∥BC,AB∥CM

四邊形MNBC是平行四邊形,

∴BN=CM=

∴AB=AN+BN=13.8米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】【題目】如圖①,一次函數 y x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數 y x2 bx c的圖像經過 AB 兩點,與 x 軸交于另一點 C

(1)求二次函數的關系式及點 C 的坐標;

(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P PDx 軸交 AB 于點 D,PEy 軸交 AB 于點 E,求 PDPE 的最大值;

(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標.

① ②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OM,OC1

1)求證:AMMD;

2)填空:

①若DN,則△ABC的面積為   

②當四邊形COMD為平行四邊形時,∠C的度數為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y=(x0)與正比例函數y=x(x0)的圖象,點A(1,4),點A'(4,b)與點B'均在反比例函數的圖象上,點B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點的坐標為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,點E,G分別是ADBC邊的中點,連接BE,CE,點F,H分別是BE,CE的中點連接FG,HG

1)求證:四邊形EFGH是菱形;

2)當   時,四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線的對稱軸為直線,且頂點在軸上,與軸的交點為,點的坐標為,點在拋物線的對稱軸上,直線與直線相交于點

1)求該拋物線的函數表達式.

2)點是(1)中圖象上的點,過點軸的垂線與直線交于點.試判斷是否為等腰三角形,并說明理由.

3)作于點,當點從橫坐標2013處運動到橫坐標2019處時,請求出點運動的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A的坐標為(0,2),點P(m,n)是拋物線上的一個動點.

(1)如圖1,過動點PPBx軸,垂足為B,連接PA,請通過測量或計算,比較PAPB的大小關系:PA_____PB(直接填寫”““=”,不需解題過程);

(2)請利用(1)的結論解決下列問題:

①如圖2,設C的坐標為(2,5),連接PCAP+PC是否存在最小值?如果存在,求點P的坐標;如果不存在,簡單說明理由;

②如圖3,過動點P和原點O作直線交拋物線于另一點D,若AP=2AD,求直線OP的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖的中,,且上一點.今打算在上找一點,在上找一點,使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交點、點,則、兩點即為所求

(乙)過作與平行的直線交點,過作與平行的直線交點,則、兩點即為所求

對于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確B. 兩人皆錯誤

C. 甲正確,乙錯誤D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD內部有若干個點,則用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):

1)填寫下表:

正方形ABCD內點的個數

1

2

3

4

...

n

分割成三角形的個數

4

6

_____

_____

...

_____

2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內部有多少個點?若不能,請說明理由.

查看答案和解析>>

同步練習冊答案