【題目】(1)如圖 1,O 是等邊三角形 ABC 內(nèi)一點(diǎn),連接 OA,OB,OC,且 OA=3,OB=4,OC=5,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.
填空:①旋轉(zhuǎn)角為 °;②線段 OD 的長(zhǎng)是 ;③∠BDC= °;
(2)如圖 2,O 是△ABC 內(nèi)一點(diǎn),且∠ABC=90°,BA=BC. 連接 OA,OB,OC,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.當(dāng) OA,OB,OC 滿足什么條件時(shí),∠BDC=135°?請(qǐng)說(shuō)明理由.
【答案】(1)①60;②4;③150;(2) ,理由見(jiàn)解析
【解析】
(1)根據(jù)△ABC是等邊三角形可得旋轉(zhuǎn)角為60°,根據(jù)旋轉(zhuǎn)可得CD= OA=3,△B OD是等邊三角形,即可求出OD 的長(zhǎng),再根據(jù)勾股定理逆定理求出∠ODC=90°即可求解;
(2)先根據(jù)△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,可得∠OBD=∠ABC=90°,BO=BD,CD=AO,故得到△OBD是等腰直角三角形,DO=,再由勾股定理得到△OCD是直角三角形,∠ODC=90°,即OA2+2OB2=OC2,再進(jìn)行等量替換即可求解.
(1)①∵△ABC是等邊三角形
∴BA=BC,∠ABC=60°
∵將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,
∴∠OBD=∠ABC=60°
∴旋轉(zhuǎn)角為60°,
②∵將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,
∴BO= BD
∵∠OBD=60°
∴△B OD是等邊三角形,
∴OD = OB=4,
③∵△B OD是等邊三角形,
∴∠BDO=60°
∵將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,
∴CD= AO=3
在△OCD中,CD=3,OD=4,OC=5
∴CD2+OD2=OC2
∴△OCD是直角三角形,∠ODC=90°
∴∠BDC=∠BDO+∠ODC=150°
故答案為:①60;②4;③150;
(2)當(dāng)OA2+2OB2=OC2時(shí),∠BDC=135°,
理由如下:
∵將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,
∴∠OBD=∠ABC=90°,BO=BD,CD=AO
∴△OBD是等腰直角三角形,且∠BDO=45°,
∴DO=
∵CD2+OD2=OC2時(shí),△OCD是直角三角形,∠ODC=90°,
即當(dāng)OA2+2OB2=OC2時(shí),∠ODC=90°,∠BDC=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點(diǎn),E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有( )
A.一處B.二處C.三處D.四處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn),且,滿足.過(guò)點(diǎn)分別作軸、軸,垂足分別是點(diǎn)、.
(1)求出點(diǎn)的坐標(biāo);
(2)點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),的角平分線交射線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過(guò)程中,的值是否變化?若不變,求出其值;若變化,說(shuō)明理由.
(3)在四邊形的邊上是否存在點(diǎn),使得將四邊形分成面積比為1:4的兩部分?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,自正方形ABCD的頂點(diǎn)A引兩條射線分別交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,當(dāng)點(diǎn)E、F分別在邊BC、CD上移動(dòng)時(shí),BE+DF與EF的關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長(zhǎng)為20,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOC=30°,半徑為1cm的⊙P的圓心在射線OA上,開(kāi)始時(shí),PO=6cm,如果⊙P以1cm/秒的速度沿由A向B的方向移動(dòng),那么當(dāng)⊙P的運(yùn)動(dòng)時(shí)間t(秒)滿足什么條件時(shí),⊙P與直線CD相交?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一堆彩球有紅、黃兩種顏色,首先數(shù)出的50個(gè)球中有49個(gè)紅球,以后每數(shù)出8個(gè)球中都有7個(gè)紅球,一直數(shù)到最后8個(gè)球,正好數(shù)完,在已經(jīng)數(shù)出的球中紅球的數(shù)目不少于90%.
(1)這堆球的數(shù)目最多有多少個(gè)?
(2)在(1)的情況下,從這堆彩球中任取兩個(gè)球,恰好為一紅一黃的概率有多大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,AB=10cm,點(diǎn)P由點(diǎn)C出發(fā)以每秒2cm的速度沿CA向點(diǎn)A運(yùn)動(dòng)(不運(yùn)動(dòng)至A點(diǎn)),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當(dāng)點(diǎn)P運(yùn)動(dòng)2秒鐘時(shí),求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com